DOI QR코드

DOI QR Code

Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate

  • Behdinan, Kamran (Advanced Research Laboratory for Multifunctional Lightweight Structures (ARL-MLS), Department of Mechanical & Industrial Engineering, University of Toronto) ;
  • Moradi-Dastjerdi, Rasool (Advanced Research Laboratory for Multifunctional Lightweight Structures (ARL-MLS), Department of Mechanical & Industrial Engineering, University of Toronto)
  • Received : 2021.12.12
  • Accepted : 2022.03.16
  • Published : 2022.06.25

Abstract

The critical buckling temperature rise of a newly proposed piezoelectrically active sandwich plate (ASP) has been investigated in this work. This structure includes a porous polymeric layer integrated between two piezoelectric nanocomposite layers. The piezoelectric material is made of a passive polymeric material that is activated by lead-free nanowires (NWs) of zinc oxide (ZnO) embedded inside the matrix. In both nanocomposite layers and porous core, functional graded (FG) patterns have been considered for the distributions of ZnO NWs and voids, respectively. By adopting a higher-order theory of plates, the governing equations of thermal buckling are obtained. This set of equations is then treated using an extended mesh-free solution. The effects of plate dimensions, porosity states, and the nanowire parameters have been investigated on the critical buckling temperature rises of the proposed lightweight ASPs with different boundary conditions. The results disclose that the use of porosities in the core and/or mixing ZnO NWs in the face sheets substantially arise the critical buckling temperatures of the newly proposed active sandwich plates.

Keywords

Acknowledgement

The authors are grateful for the financial support from the National Science and Technology Major Project of the Ministry of Science and Technology of the People's Republic of China (No.2012ZX04003101).

References

  1. Ahmadi, H. and Foroutan, K. (2020), "Nonlinear static and dynamic thermal buckling analysis of imperfect multilayer FG cylindrical shells with an FG porous core resting on nonlinear elastic foundation'', J. Therm. Stress., 43(5), 629-649. https://doi.org/10.1080/01495739.2020.1727802.
  2. Akhras, G. and Li, W.C. (2010), "Three-dimensional thermal buckling analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method'', Compos. Struct., 92(1), 31-38. https://doi.org/10.1016/J.COMPSTRUCT.2009.06.010.
  3. Alian, A.R., Kundalwal, S.I. and Meguid, S.A. (2015), "Multiscale modeling of carbon nanotube epoxy composites'', Polym., 70, 149-160. https://doi.org/10.1016/j.polymer.2015.06.004.
  4. Angelou, A., Norman, C., Miran, N., Albers, S., Moradi-Dastjerdi, R. and Behdinan, K. (2021), "An eco-friendly, biocompatible and reliable piezoelectric nanocomposite actuator for the new generation of microelectronic devices'', Eur. Phys. J. Plus, 136, 678. https://doi.org/10.1140/epjp/s13360-021-01653-z.
  5. Ansari, E. and Setoodeh, A. (2019), "Applying isogeometric approach for free vibration, mechanical, and thermal buckling analyses of functionally graded variable-thickness blades'', Artic. J. Vib. Control, 26, 23-24. https://doi.org/10.1177/1077546320915336.
  6. Ansari, E., Setoodeh, A.R. and Rabczuk, T. (2020), "Isogeometricstepwise vibrational behavior of rotating functionally graded blades with variable thickness at an arbitrary stagger angle subjected to thermal environment'', Compos. Struct., 244, 112281. https://doi.org/10.1016/j.compstruct.2020.112281.
  7. Arshid, E., Amir, S. and Loghman, A. (2021a), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers'', J. Sandw. Struct. Mater., 23(8), 3836 -3877. https://doi.org/10.1177/1099636220955027.
  8. Arshid, E., Amir, S. and Loghman, A. (2021b), "Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates'', Aerosp. Sci. Technol., 111, 106561. https://doi.org/10.1016/J.AST.2021.106561.
  9. Bateni, M., Kiani, Y. and Eslami, M.R. (2013), "A comprehensive study on stability of FGM plates'', Int. J. Mech. Sci., 75, 134-44. https://doi.org/10.1016/j.ijmecsci.2013.05.014.
  10. Behdinan, K. and Moradi-Dastjerdi, R. (2021), Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation, John Wiley & Sons.
  11. Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Guinovart, R., Otero, J.A. and Bravo-Castillero, J. (2005), "An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites'', Int. J. Solids Struct., 42(21-22), 5692-5714. https://doi.org/10.1016/j.ijsolstr.2005.03.016.
  12. Bouazza, M. and Zenkour, A.M. (2020), "Hygro-thermomechanical buckling of laminated beam using hyperbolic refined shear deformation theory'', Compos. Struct., 252, 112689. https://doi.org/10.1016/J.COMPSTRUCT.2020.112689.
  13. Cetkovic, M. (2016), "Thermal buckling of laminated composite plates using layerwise displacement model'', Compos. Struct., 142, 238-253. https://doi.org/10.1016/j.compstruct.2016.01.082.
  14. Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT'', Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.
  15. Dinh Khoa, N., Thi Thiem, H. and Duc, N.D. (2019), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory'', Mech. Adv. Mater. Struct., 26(3), 248-259. https://doi.org/10.1080/15376494.2017.1341583.
  16. Ebrahimi, F., Barati, M.R., Ebrahimi, F. and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezoelectro- magnetically actuated nanoscale beams'', Adv. Nano Res., 4(2), 65-84. https://doi.org/10.12989/ANR.2016.4.2.065.
  17. Ebrahimi, F., Barati, M.R., Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory'', Adv. Nano Res., 6(2), 93-112. https://doi.org/10.12989/ANR.2018.6.2.093.
  18. Fan, F., Cai, X., Sahmani, S. and Safaei, B. (2021), "Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity'', Compos. Struct., 262, 113604. https://doi.org/10.1016/J.COMPSTRUCT.2021.113604.
  19. Foroutan, M. and Moradi-Dastjerdi, R. (2011), "Dynamic analysis of functionally graded material cylinders under an impact load by a mesh-free method'', Acta Mech., 219, 281-290. https://doi.org/10.1007/s00707-011-0448-4.
  20. Ghahramani, P., Behdinan, K., Moradi-Dastjerdi, R. and Naguib, H.E. (2022), "Theoretical and experimental investigation of MWCNT dispersion effect on the elastic modulus of flexible PDMS / MWCNT nanocomposites'', Nanotechnol. Rev., 11, 55-64. Available at: https://doi.org/10.1515/ntrev-2022-0006.
  21. Heidari, F., Afsari, A., Janghorban, M., Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects'', Adv. Nano Res., 9(3), 193-210. https://doi.org/10.12989/ANR.2020.9.3.193.
  22. Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials'', J. Therm. Stress., 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768.
  23. Kamarian, S., Bodaghi, M. and Song, J. (2020), "Hygrothermal effects on the buckling of soft-core sandwich plates with composite layered face sheets'', Polym. Compos., 41(10), 4144-4169. https://doi.org/10.1002/PC.25700.
  24. Kamarian, S., Bodaghi, M., Isfahani, R.B. and Song, J.I. (2021), "Thermal buckling analysis of sandwich plates with soft core and CNT-Reinforced composite face sheets'', J. Sandw. Struct. Mater., 23(8), 3606-3644. https://doi.org/10.1177/1099636220935557.
  25. Keshmiri, A., Wu, N. and Wang, Q. (2018), "A new nonlinearly tapered FGM piezoelectric energy harvester'', Eng. Struct., 173, 52-60. https://doi.org/10.1016/j.engstruct.2018.06.081.
  26. Kundalwal, S.I. and Ray, M.C. (2016), "Smart damping of fuzzy fiber reinforced composite plates using 1-3 piezoelectric composites'', J. Vib. Control, 22(6), 1526-1546. https://doi.org/10.1177/1077546314543726.
  27. Lancaster, P. and Salkauskas, K. (1981), "Surface Generated by Moving Least Squares Methods'', Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  28. Malekzadeh, P., Setoodeh, A.R. and Beni, A.A. (2011), "Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium'', Compos. Struct., 93(8), 2083-2089. https://doi.org/10.1016/J.COMPSTRUCT.2011.02.013.
  29. Malekzadeh, P., Setoodeh, A.R. and Shojaee, M. (2018), "Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method'', Comput. Methods Appl. Mech. Eng., 340, 451-479. https://doi.org/10.1016/j.cma.2018.06.006.
  30. Mehar, K., Panda, S.K., Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure'', Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.
  31. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution'', Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/SEM.2019.72.4.513.
  32. Meschino, M., Wang, L., Xu, H., Moradi-Dastjerdi, R. and Behdinan, K. (2021), "Low-frequency nanocomposite piezoelectric energy harvester with embedded zinc oxide nanowires'', Polym. Compos., 42, 4573-4585. https://doi.org/10.1002/pc.26169.
  33. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S., Behzad, Afshari, M., Sajad Mirjavadi, S., Shaaei, N. and Afshari, B.M. (2017), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam'', J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  34. Mirzaei, M. and Kiani, Y. (2017), "Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation'', Compos. Struct., 180, 606-16. https://doi.org/10.1016/j.compstruct.2017.08.057.
  35. Mishra, N., Krishna, B., Singh, R. and Das, K. (2017), "Evaluation of effective elastic, piezoelectric, and dielectric properties of SU8/ZnO nanocomposite for vertically integrated nanogenerators using finite element method'', J. Nanomater., 2017, 1924651. https://doi.org/10.1155/2017/1924651.
  36. Moradi-Dastjerdi, R. and Behdinan, K. (2020a), "Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers'', Int. J. Mech. Sci., 167, 105283. https://doi.org/10.1016/j.ijmecsci.2019.105283.
  37. Moradi-Dastjerdi, R. and Behdinan, K. (2020b), "Thermo-electromechanical behavior of an advanced smart lightweight sandwich plate'', Aerosp. Sci. Technol., 106, 106142. https://doi.org/10.1016/j.ast.2020.106142.
  38. Moradi-Dastjerdi, R. and Behdinan, K. (2021a), "Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate'', Appl. Energy, 293, 116947. https://doi.org/10.1016/j.apenergy.2021.116947.
  39. Moradi-Dastjerdi, R. and Behdinan, K. (2021b), "Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers'', Appl. Math. Model., 96, 66-79. https://doi.org/10.1016/j.apm.2021.03.013.
  40. Moradi-Dastjerdi, R. and Behdinan, K. (2021c), "Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments'', Aerosp. Sci. Technol., 110, 106476. https://doi.org/10.1016/j.ast.2020.106476.
  41. Moradi-Dastjerdi, R. and Behdinan, K. (2021d), "Temperature effect on free vibration response of a smart multifunctional sandwich plate'', J. Sandw. Struct. Mater., 23(6), 2399-2421. Available at: https://doi.org/10.1177/1099636220908707.
  42. Moradi-Dastjerdi, R., Radhi, A. and Behdinan, K. (2020), "Damped dynamic behavior of an advanced piezoelectric sandwich plate'', Compos. Struct., 243, 112243. https://doi.org/10.1016/j.compstruct.2020.112243.
  43. Mosallaie Barzoki, A.A., Ghorbanpour Arani, A., Kolahchi, R. and Mozdianfard, M.R. (2012), "Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core'', Appl. Math. Model., 36(7), 2983-2995. https://doi.org/10.1016/j.apm.2011.09.093.
  44. Nguyen, L.B., Nguyen, N.V, Thai, C.H., Ferreira, A.M.J. and Nguyen-xuan, H. (2019), "An isogeometric Bezier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets'', Compos. Struct., 214, 227-245. https://doi.org/10.1016/j.compstruct.2019.01.077.
  45. O zgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J. and Morko, H. (2005), "A comprehensive review of ZnO materials and devices'', J. Appl. Phys., 1-103. https://doi.org/10.1063/1.1992666.
  46. Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams'', Thin-Walled Struct., 166, 108127. https://doi.org/10.1016/J.TWS.2021.108127.
  47. Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect'', Compos. Part B, 166(December 2018), 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.
  48. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
  49. Safaei, B. (2021), "Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces'', Eur. Phys. J. Plus, 136, 646. https://doi.org/10.1140/epjp/s13360-021-01632-4.
  50. Setoodeh, A.R., Ghorbanzadeh, M. and Malekzadeh, P. (2012), "A two-dimensional free vibration analysis of functionally graded sandwich beams under thermal environment'', Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 226(12), 2860-2873. https://doi.org/10.1177/0954406212440669.
  51. Setoodeh, A.R., Shojaee, M. and Malekzadeh, P. (2018), "Application of transformed differential quadrature to free vibration analysis of FG-CNTRC quadrilateral spherical panel with piezoelectric layers'', Comput. Methods Appl. Mech. Engrg., 335, 510-537. https://doi.org/10.1016/j.cma.2018.02.022.
  52. Setoodeh, A.R., Shojaee, M. and Malekzadeh, P. (2019), "Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core'', Compos. Part B Eng., 165, 798-822. https://doi.org/10.1016/J.COMPOSITESB.2019.01.022.
  53. Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I : Axially-loaded shells'', Compos. Struct., 93(8), 2096-2108. https://doi.org/10.1016/j.compstruct.2011.02.011.
  54. Singh, S., Singh, J. and Shukla, K.K. (2013), "Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations'', J. Mech. Sci. Technol., 27(2), 327-336. https://doi.org/10.1007/s12206-012-1249-y.
  55. Sobhani, E. and Masoodi, A.R. (2021), "Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches'', Aerosp. Sci. Technol., 119, 107111. https://doi.org/10.1016/J.AST.2021.107111.
  56. Sobhani, E., Masoodi, A.R. and Ahmadi-Pari, A.R. (2021), "Vibration of FG-CNT and FG-GNP sandwich composite coupled Conical-Cylindrical-Conical shell'', Compos. Struct., 273, 114281. https://doi.org/10.1016/J.COMPSTRUCT.2021.114281.
  57. Sobhani, E., Masoodi, A.R., Civalek, O. and Ahmadi-Pari, A.R. (2022a), "Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells'', Aerosp. Sci. Technol., 120, 107257. https://doi.org/10.1016/J.AST.2021.107257.
  58. Sobhani, E., Moradi-Dastjerdi, R., Behdinan, K., Masoodi, A.R. and Ahmadi-Pari, A.R. (2022b), "Multifunctional trace of various reinforcements on vibrations of three-phase nanocomposite combined hemispherical-cylindrical shells'', Compos. Struct., 279, 114798. https://doi.org/10.1016/j.compstruct.2021.114798.
  59. Sobhy, M. and Zenkour, A.M. (2018), "Nonlocal Thermal and Mechanical Buckling of Nonlinear Orthotropic Viscoelastic Nanoplates Embedded in a Visco-Pasternak Medium'', Int. J. Appl. Mech., 10(8), 1850086. https://doi.org/10.1142/S1758825118500862.
  60. Sobhy, M. (2021), "Analytical buckling temperature prediction of FG piezoelectric sandwich plates with lightweight core'', Mater. Res. Express, 8, 95704. https://doi.org/10.1088/2053-1591/ac28b9.
  61. Tan, P. and Tong, L. (2001), "Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials'', Compos. Sci. Technol., 61(5), 759-769. https://doi.org/10.1016/S0266-3538(01)00014-8.
  62. Tao, C. and Dai, T. (2022), "Modified couple stress-based nonlinear static bending and transient responses of sizedependent sandwich microplates with graphene nanocomposite and porous layers'', Thin-Walled Struct., 171, 108704. https://doi.org/10.1016/J.TWS.2021.108704.
  63. Tounsi, A., Benguediab, S., Bedia, E.A.A., Semmah, A., Zidour, M., Tounsi, A., Benguediab, S., Bedia, E.A.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes'', Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/ANR.2013.1.1.001.
  64. Trinh, M.C. and Kim, S.E. (2019), "Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment'', Aerosp. Sci. Technol., 84, 672-685. https://doi.org/10.1016/j.ast.2018.09.018.
  65. Tuloup, C., Harizi, W., Aboura, Z., Meyer, Y., Khellil, K. and Lachat, R. (2019), "On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review'', Compos. Struct., 215, 127-149. https://doi.org/10.1016/J.COMPSTRUCT.2019.02.046.
  66. Wang, E., Tehrani, M.S., Zare, Y. and Rhee, K.Y. (2018), "A new methodology based on micromechanics model to predict the tensile modulus and network formation in polymer/CNT nanocomposites'', Colloid Surface A, 550, 20-26. https://doi.org/10.1016/j.colsurfa.2018.04.032.
  67. Yaghoobi, H., Fereidoon, A., Khaksari Nouri, M. and Mareishi, S. (2015), "Thermal buckling analysis of piezoelectric functionally graded plates with temperature-dependent properties'', Mech. Adv. Mater. Struct., 22(10), 864-875. https://doi.org/10.1080/15376494.2013.864436.
  68. Yang, Z., Liu, A., Lai, S.K., Safaei, B., Lv, J., Huang, Y. and Fu, J. (2022), "Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches'', Eng. Struct., 250, 113243. https://doi.org/10.1016/J.ENGSTRUCT.2021.113243.
  69. Yasmin, A., Luo, J.J., Abot, J.L. and Daniel, I.M. (2006), "Mechanical and thermal behavior of clay/epoxy nanocomposites'', Compos. Sci. Technol., 66(14), 2415-2422. https://doi.org/10.1016/j.compscitech.2006.03.011.
  70. Yu, T., Quoc Bui, T., Yin, S., Doan, H., Wu, C.T., Van Do, T. and Tanaka, S. (2016), "On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis'', Compos. Struct., 136, 684-695. https://doi.org/10.1016/j.compstruct.2015.11.002.
  71. Zargar, O., Mollaghaee-Roozbahani, M., Bashirpour, M. and Baghani, M. (2019), "The application of Homotopy Analysis Method to determine the thermal response of convectiveradiative porous fins with temperature-dependent properties'', Int. J. Appl. Mech. https://doi.org/10.1142/s1758825119500881.
  72. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates'', Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/J.COMPSTRUCT.2010.06.012.
  73. Zenkour, A.M. and Aljadani, M.H. (2019), "Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates'', Eur. J. Mech. A/Solids, 78, 103835. https://doi.org/10.1016/j.euromechsol.2019.103835.
  74. Zhang, L., Zhang, F., Qin, Z., Han, Q., Wang, T. and Chu, F. (2022), "Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring'', Energy, 238, 121770. https://doi.org/10.1016/J.ENERGY.2021.121770.
  75. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates'', Compos. Struct., 90, 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005.
  76. Zhao, S., Zhao, Z., Yang, Z., Ke, L.L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review'', Eng. Struct., 110339. https://doi.org/10.1016/j.engstruct.2020.110339.