DOI QR코드

DOI QR Code

Management of the energy harvesting for MEMS/NEMS via newmark current method

  • Shang, Kun (College of Electrical Engineering, Yellow River Conservancy Technical Institute) ;
  • Shan, Huafeng (Keeson Technology Corporation Limited) ;
  • Alkhalaf, Salem (Department of Computer, College of Science and Arts in Ar Rass, Qassim University) ;
  • Marzouki, Riadh (Chemistry Department, College of Science, King Khalid University) ;
  • Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
  • 투고 : 2021.12.30
  • 심사 : 2022.03.06
  • 발행 : 2022.06.25

초록

The free and forced vibration in addition to electric energy harvesting of a piezoelectric disk resting on two-parameter foundation modeled by modified couple stress as well as Kirchhoff plate theory is probed. The governing equations and boundary conditions are obtained using Hamilton's principle. Then, the free and forced vibration are solved using numerical solutions, generalized differential quadrature method (GDQM) and Newmark-beta method. The forced vibration is resulted from a base excitation load. Also, the possible voltage which can be harvested from this system is obtained using generalized integral quadrature method. The validity of the formulation and solution procedure is confirmed using a compassion study. The impact of parameters such as length effect, inner to outer radius ratio, and foundations parameters on the free and forced vibration as well as energy harvesting is investigated in detail. This paper can be a basis for future studies in the area of piezoelectric harvesters in small scales.

키워드

과제정보

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through group research program under grant number RGP.2/224/43.

참고문헌

  1. Abazid, M.A. and Sobhy, M. (2018), "Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory", Microsyst. Technol., 24(2), 1227-1245. https://doi.org/10.1007/s00542-017-3492-8.
  2. Abdelkefi, A. (2016), "Aeroelastic energy harvesting: A review", Int. J. Eng. Sci., 100, 112-135. https://doi.org/10.1016/j.ijengsci.2015.10.006.
  3. Adamian, A., Safari, K.H., Sheikholeslami, M., Habibi, M., Al-Furjan, M. and Chen, G. (2020), "Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251.
  4. Adriaens, H., De Koning, W.L. and Banning, R. (2000), "Modeling piezoelectric actuators", IEEE T. Mechatron., 5(4), 331-341. https://doi.org/10.1109/3516.891044.
  5. Al-Furjan, M., Alzahrani, B., Shan, L., Habibi, M. and Jung, D.W. (2020a), "Nonlinear forced vibrations of nanocompositereinforced viscoelastic thick annular system under hygrothermal environment", Mech. Based Des. Struct., 1-27. https://doi.org/10.1080/15397734.2020.1824795.
  6. Al-Furjan, M., Bolandi, S.Y., Habibi, M., Ebrahimi, F., Chen, G. and Safarpour, H. (2021a), "Enhancing vibration performance of a spinning smart nanocomposite reinforced microstructure conveying fluid flow", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-020-01255-w.
  7. Al-Furjan, M., Bolandi, S.Y., Shan, L., Habibi, M. and Jung, D.w. (2020b), "On the vibrations of a high-speed rotating multihybrid nanocomposite reinforced cantilevered microdisk", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1828098.
  8. Al-Furjan, M., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2020c), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 112990. https://doi.org/10.1016/j.compstruct.2020.112990.
  9. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020d), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01177-7.
  10. Al-Furjan, M., Fereidouni, M., Sedghiyan, D., Habibi, M. and won Jung, D. (2020e), "Three-dimensional frequency response of the CNT-Carbon-Fiber reinforced laminated circular/annular plates under initially stresses", Compos. Struct., 113146. https://doi.org/10.1016/j.compstruct.2020.113146.
  11. Al-Furjan, M., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020f), "Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM", Compos. Struct., 252 112737. https://doi.org/10.1016/j.compstruct.2020.112737.
  12. Al-Furjan, M., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020g), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.
  13. Al-Furjan, M., Habibi, M., Ebrahimi, F., Chen, G., Safarpour, M. and Safarpour, H. (2020h), "A coupled thermomechanics approach for frequency information of electrically composite microshell using heat-transfer continuum problem", Eur. Phys. J. Plus, 135(10), 1-45. https://doi.org/10.1140/epjp/s13360-020-00764-3.
  14. Al-Furjan, M., Habibi, M., Ebrahimi, F., Mohammadi, K. and Safarpour, H. (2020i), "Wave dispersion characteristics of highspeed- rotating laminated nanocomposite cylindrical shells based on four continuum mechanics theories", Wave. Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2020.1831099.
  15. Al-Furjan, M., Habibi, M., Ni, J., won Jung, D. and Tounsi, A. (2020j), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01200-x.
  16. Al-Furjan, M., Habibi, M. and Safarpour, H. (2020k), "Vibration control of a smart shell reinforced by graphene nanoplatelets", Int. J. Appl. Mech., 12(6), 2050066. https://doi.org/10.1142/S1758825120500660.
  17. Al-Furjan, M., Habibi, M., Shan, L. and Tounsi, A. (2020l), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
  18. Al-Furjan, M., Habibi, M., won Jung, D., Chen, G., Safarpour, M. and Safarpour, H. (2020m), "Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doublycurved panel", Eur. J. Mech. A Solids, 85, 104091. https://doi.org/10.1016/j.euromechsol.2020.104091.
  19. Al-Furjan, M., Habibi, M., won Jung, D., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020n), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8.
  20. Al-Furjan, M., Habibi, M., won Jung, D. and Safarpour, H. (2020o), "Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory", Compos. Struct., 113152. https://doi.org/10.1016/j.compstruct.2020.113152.
  21. Al-Furjan, M., Habibi, M., won Jung, D., Safarpour, H. and Safarpour, M. (2020p), "On the buckling of the polymer-CNTfiber nanocomposite annular system under thermo-mechanical loads", Mech. Based Des. Struct., 1-21. https://doi.org/10.1080/15397734.2020.1830106.
  22. Al-Furjan, M., Moghadam, S.A., Dehini, R., Shan, L., Habibi, M. and Safarpour, H. (2020q), "Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Seminumerical and finite element modeling", Thin Wall. Struct., 107242. https://doi.org/10.1016/j.tws.2020.107242.
  23. Al-Furjan, M., Mohammadgholiha, M., Alarifi, I.M., Habibi, M. and Safarpour, H. (2020r), "On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01152-2.
  24. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020s), "Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via twodimensional analysis", Thin Wall. Struct., 157, 107111. https://doi.org/10.1016/j.tws.2020.107111.
  25. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020t), "Wave propagation simulation in an electrically open shell reinforced with multi-phase nanocomposites", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01167-9.
  26. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H., Jung, D.W. and Tounsi, A. (2020u), "On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel", Compos. Struct., 112947. https://doi.org/10.1016/j.compstruct.2020.112947.
  27. Al-Furjan, M., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020v), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
  28. Al-Furjan, M.S.H., Dehini, R., Paknahad, M., Habibi, M. and Safarpour, H. (2021b), "On the nonlinear dynamics of the multiscale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment", Arch. Civil Mech. Eng., 21(1), 4. https://doi.org/10.1007/s43452-020-00151-w.
  29. Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Based Des. Struct., 48(5), 525-541. https://doi.org/10.1080/15397734.2019.1633343.
  30. Ansari, R., Ashrafi, M. and Hosseinzadeh, S. (2014), "Vibration characteristics of piezoelectric microbeams based on the modified couple stress theory", Shock Vib., 2014, 598292. https://doi.org/10.1155/2014/598292.
  31. Bai, Y., Alzahrani, B., Baharom, S. and Habibi, M. (2020), "Seminumerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-020-01191-9.
  32. Casadei, F., Delpero, T., Bergamini, A., Ermanni, P. and Ruzzene, M. (2012), "Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials", J. Appl. Phys., 112(6), 064902. https://doi.org/10.1063/1.4752468
  33. Chen, F., Chen, J., Duan, R., Habibi, M. and Khadimallah, M.A. (2022), "Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle", Compos. Struct., 115195. https://doi.org/10.1016/j.compstruct.2022.115195.
  34. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.W., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2020.1744005.
  35. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175-189. https://doi.org/10.12989/anr.2021.10.2.175.
  36. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite opentype shell under residual stresses", Compos. Struct., 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  37. Davino, D., Giustiniani, A., Visone, C. and Adly, A. (2011), "Experimental analysis of vibrations damping due to magnetostrictive based energy harvesting", J. Appl. Phys., 109(7), 07E509. https://doi.org/10.1063/1.3545798.
  38. Duan, W., Quek, S.T. and Wang, Q. (2005), "Free vibration analysis of piezoelectric coupled thin and thick annular plate", J. Sound Vib., 281(1-2), 119-139. https://doi.org/10.1016/j.jsv.2004.01.009.
  39. Ebrahimi, F., Habibi, M. and Safarpour, H. (2019a), "On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell", Eng. Comput., 35(4), 1375-1389. https://doi.org/10.1007/s00366-018-0669-4.
  40. Ebrahimi, F., Hajilak, Z.E., Habibi, M. and Safarpour, H. (2019b), "Buckling and vibration characteristics of a carbon nanotubereinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(13), 4590-4605. https://doi.org/10.1177/0954406219832323.
  41. Ebrahimi, F., Hashemabadi, D., Habibi, M. and Safarpour, H. (2020a), "Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell", Microsyst. Technol., 26(2), 461-473. https://doi.org/10.1007/s00542-019-04542-9.
  42. Ebrahimi, F., Mohammadi, K., Barouti, M.M. and Habibi, M. (2019c), "Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell", Wave. Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2019.1694729.
  43. Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020b), "Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer", Eur. Phys. J. Plus, 135(2), 144. https://doi.org/10.1140/epjp/s13360-020-00217-x.
  44. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
  45. Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  46. Esmailpoor Hajilak, Z., Pourghader, J., Hashemabadi, D., Sharifi Bagh, F., Habibi, M. and Safarpour, H. (2019), "Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory", Mech. Based Des. Struct., 47(5), 521-545. https://doi.org/10.1080/15397734.2019.1566743.
  47. Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Based Des. Struct., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.1662310.
  48. Gheshlaghi, B. and Hasheminejad, S.M. (2012), "Vibration analysis of piezoelectric nanowires with surface and small scale effects", Curr. Appl. Phys., 12(4), 1096-1099. https://doi.org/10.1016/j.cap.2012.01.014
  49. Granstrom, J., Feenstra, J., Sodano, H.A. and Farinholt, K. (2007), "Energy harvesting from a backpack instrumented with piezoelectric shoulder straps", Smart Mater. Struct., 16(5), 1810. https://doi.org/10.1088/0964-1726/16/5/036
  50. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021a), "An intelligent computer method for vibration responses of the spinning multilayer symmetric nanosystem using multi-physics modeling", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01433-4.
  51. Guo, Y., Mi, H. and Habibi, M. (2021b), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Pr., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
  52. Habibi, M., Darabi, R., Sa, J.C.d. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 235(8), 1937-1951. https://doi.org/10.1177/14644207211024686.
  53. Habibi, M., Ghazanfari, A., Assempour, A., Naghdabadi, R. and Hashemi, R. (2017), "Determination of forming limit diagram using two modified finite element models", Mech Eng., 48(4), 141-144. https://doi.org/10.22060/MEJ.2016.664.
  54. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019a), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plus, 134(6), 307. https://doi.org/10.1140/epjp/i2019-12742-7.
  55. Habibi, M., Hashemi, R., Ghazanfari, A., Naghdabadi, R. and Assempour, A. (2018a), "Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(8), 625-636. https://doi.org/10.1177/1464420716642258
  56. Habibi, M., Hashemi, R., Sadeghi, E., Fazaeli, A., Ghazanfari, A. and Lashini, H. (2016), "Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures", J. Mater. Eng. Perform., 25(2), 382-389. https://doi.org/10.1007/s11665-016-1882-1.
  57. Habibi, M., Hashemi, R., Tafti, M.F. and Assempour, A. (2018b), "Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding", J. Manuf. Proc., 31, 310-323. https://doi.org/10.1016/j.jmapro.2017.11.009.
  58. Habibi, M., Mohammadgholiha, M. and Safarpour, H. (2019b), "Wave propagation characteristics of the electrically GNPreinforced nanocomposite cylindrical shell", J. Brazil. Soc. Mech. Sci. Eng., 41(5), 221. https://doi.org/10.1007/s40430-019-1715-x.
  59. Habibi, M., Mohammadi, A., Safarpour, H. and Ghadiri, M. (2019c), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Based Des. Struct., 1-30.
  60. Habibi, M., Mohammadi, A., Safarpour, H., Shavalipour, A. and Ghadiri, M. (2019d), "Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator", Mech. Based Des. Struct., 1-19. https://doi.org/10.1080/15397734.2019.1697932.
  61. Habibi, M., Safarpour, M. and Safarpour, H. (2020), "Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2020.1779086.
  62. Habibi, M., Taghdir, A. and Safarpour, H. (2019e), "Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets", Compos. Part B Eng., 175, 107125. https://doi.org/10.1016/j.compositesb.2019.107125.
  63. Hashemi, H.R., Alizadeh, A.A., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave. Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2019.1662968.
  64. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin Wall. Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019.
  65. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  66. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary sizedependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  67. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  68. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021c), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  69. Jiao, J., Ghoreishi, S.M., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magnetoelectro-elastic nanosystem", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x.
  70. Junior, C.D.M., Erturk, A. and Inman, D.J. (2009), "An electromechanical finite element model for piezoelectric energy harvester plates", J. Sound Vib., 327(1-2), 9-25. https://doi.org/10.1016/j.jsv.2009.05.015.
  71. Lallart, M., Pruvost, S. and Guyomar, D. (2011), "Electrostatic energy harvesting enhancement using variable equivalent permittivity", Phys. Lett. A, 375(45), 3921-3924. https://doi.org/10.1016/j.physleta.2011.09.043
  72. Lam, D.C., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/j.physleta.2011.09.043.
  73. Leissa, A.W. and Qatu, M.S. (2011), "Vibrations of continuous systems", McGraw-Hill Education.
  74. Li, J., Tang, F. and Habibi, M. (2020a), "Bi-directional thermal buckling and resonance frequency characteristics of a GNPreinforced composite nanostructure", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01110-y.
  75. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020b), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  76. Li, Y. and Pan, E. (2015), "Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory", Int. J. Eng. Sci., 97 40-59. https://doi.org/10.1016/j.ijengsci.2015.08.009.
  77. Liu, H., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2021a), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01316-8.
  78. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M. and Issakhov, A. (2021b), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2.
  79. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021c), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-021-01454-z.
  80. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  81. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  82. Lori, E.S., Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01004-z.
  83. Ma, H., Gao, X.L. and Reddy, J. (2008), "A microstructuredependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.
  84. Ma, H., Gao, X.L. and Reddy, J. (2011), "A non-classical Mindlin plate model based on a modified couple stress theory", Acta Mech., 220(1), 217-235. https://doi.org/10.1007/s00707-011-0480-4.
  85. Ma, L., Liu, X. and Moradi, Z. (2021), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.
  86. Madinei, H., Khodaparast, H.H., Adhikari, S. and Friswell, M. (2016), A Hybrid Piezoelectric and Electrostatic Vibration Energy Harvester, Springer.
  87. Malikan, M. (2017), "Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory", Appl. Math. Modell., 48, 196-207. https://doi.org/10.1016/j.apm.2017.03.065.
  88. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/S1758825120500106.
  89. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020b), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-020-01002-1.
  90. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk", Int. J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023.
  91. Mohammadgholiha, M., Shokrgozar, A., Habibi, M. and Safarpour, H. (2019), "Buckling and frequency analysis of the nonlocal strain-stress gradient shell reinforced with graphene nanoplatelets", J. Vib. Control, 25(19-20), 2627-2640. https://doi.org/10.1177/1077546319863251.
  92. Mohammadi, A., Lashini, H., Habibi, M. and Safarpour, H. (2019), "Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM", J. Solid Mech., 11(2), 440-453. https://doi.org/10.22034/JSM.2019.665264.
  93. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Wave. Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1926572.
  94. Naderi, A., Behdad, S., Fakher, M. and Hosseini-Hashemi, S. (2020), "Vibration analysis of mass nanosensors with considering the axial-flexural coupling based on the two-phase local/nonlocal elasticity", Mech. Syst. Signal Pr., 145, 106931. https://doi.org/10.1016/j.ymssp.2020.106931..
  95. Naderi, A., Fakher, M. and Hosseini-Hashemi, S. (2021), "On the local/nonlocal piezoelectric nanobeams: Vibration, buckling, and energy harvesting", Mech. Syst. Signal Pr., 151, 107432. https://doi.org/10.1016/j.ymssp.2020.107432.
  96. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.w. and Nabipour, N. (2020), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dyn., 1-12. https://doi.org/10.1080/07391102.2020.1751297.
  97. Oyarhossein, M.A., Alizadeh, A.A., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Sci. Rep., 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w.
  98. Park, S. and Gao, X. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355. https://doi.org/10.1088/0960-1317/16/11/015
  99. Pourjabari, A., Hajilak, Z.E., Mohammadi, A., Habibi, M. and Safarpour, H. (2019), "Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures", Comput. Math. Appl., 77(10), 2608-2626. https://doi.org/10.1016/j.camwa.2018.12.041.
  100. Reddy, J. and Berry, J. (2012), "Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress", Compos. Struct., 94(12), 3664-3668. https://doi.org/10.1016/j.compstruct.2012.04.019.
  101. Safarpour, H., Ghanizadeh, S.A. and Habibi, M. (2018), "Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory", Eur. Phys. J. Plus, 133(12), 532. https://doi.org/10.1140/epjp/i2018-12385-2.
  102. Safarpour, H., Hajilak, Z.E. and Habibi, M. (2019a), "A sizedependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation", Int. J. Mech. Mater. Des., 15(3), 569-583. https://doi.org/10.1007/s10999-018-9431-8.
  103. Safarpour, H., Pourghader, J. and Habibi, M. (2019b), "Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical threedimensional shell coupled with piezoelectric actuator", J. Vib. Control, 25(9), 1543-1557. https://doi.org/10.1177/1077546319828465.
  104. Safarpour, M., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-00949-5.
  105. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 1-29. https://doi.org/10.1007/s43452-021-00279-3.
  106. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2020a), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01024-9.
  107. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.
  108. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020c), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  109. Shariati, M., Azar, S.M., Arjomand, M.-A., Tehrani, H.S., Daei, M. and Safa, M. (2020d), "Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load", Geomech. Eng., 20(2), 87-101. https://doi.org/10.12989/gae.2020.20.2.087.
  110. Shariati, M., Davoodnabi, S.M., Toghroli, A., Kong, Z. and Shariati, A. (2021a), "Hybridization of metaheuristic algorithms with adaptive neuro-fuzzy inference system to predict load-slip behavior of angle shear connectors at elevated temperatures", Compos. Struct., 114524. https://doi.org/10.1016/j.compstruct.2021.114524.
  111. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T. and Salih, M.N. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569.
  112. Shariati, M., Ghorbani, M., Naghipour, M., Alinejad, N. and Toghroli, A. (2020e), "The effect of RBS connection on energy absorption in tall buildings with braced tube frame system", Steel Compos. Struct., 34(3), 393-407. https://doi.org/10.12989/scs.2020.34.3.393.
  113. Shariati, M., Lagzian, M., Maleki, S., Shariati, A. and Trung, N.T. (2020f), "Evaluation of seismic performance factors for tensiononly braced frames", Steel Compos. Struct., 35(4), 599-609. https://doi.org/10.12989/scs.2020.35.4.599.
  114. Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020g), "A novel hybrid extreme learning machine-grey wolf optimizer (ELMGWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.
  115. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020h), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183.
  116. Shariati, M., Naghipour, M., Yousofizinsaz, G., Toghroli, A. and Tabarestani, N.P. (2020i), "Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines", Steel Compos. Struct. 34(3), 377-391. http://doi.org/10.12989/scs.2020.34.3.377.
  117. Shariati, M., Shariati, A., Trung, N.T., Shoaei, P., Ameri, F., Bahrami, N. and Zamanabadi, S.N. (2021b), "Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics", Constr. Build. Mater., 267, 120886. https://doi.org/10.1016/j.conbuildmat.2020.120886.
  118. Shariati, M., Sulong, N.R. and Khanouki, M.A. (2012), "Experimental assessment of channel shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Mater. Des., 34, 325-331. https://doi.org/10.1016/j.matdes.2011.08.008.
  119. Shariati, M., Sulong, N.R., Shariati, A. and Khanouki, M.A. (2016a), "Behavior of V-shaped angle shear connectors: Experimental and parametric study", Mater. Struct., 49(9), 3909-3926. https://doi.org/10.1617/s11527-015-0762-8.
  120. Shariati, M., Sulong, N.R., Shariati, A. and Kueh, A. (2016b), "Comparative performance of channel and angle shear connectors in high strength concrete composites: An experimental study", Constr. Build. Mater., 120, 382-392. https://doi.org/10.1016/j.conbuildmat.2016.05.102.
  121. Shariati, M., Tahmasbi, F., Mehrabi, P., Bahadori, A. and Toghroli, A. (2020j), "Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: an experimental investigation", Steel Compos Struct. 35(2), 237-247. http://doi.org/10.12989/scs.2020.35.2.237.
  122. Shokrgozar, A., Safarpour, H. and Habibi, M. (2020), "Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234(2), 512-529. https://doi.org/10.1177/0954406219883312.
  123. Toupin, R. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. An., 11(1), 385-414. https://doi.org/10.1007/BF00253945
  124. Tzou, H. and Tseng, C. (1990), "Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach", J. Sound Vib., 138(1), 17-34. https://doi.org/10.1016/0022-460X(90)90701-Z.
  125. Wang, Q., Quek, S., Sun, C. and Liu, X. (2001), "Analysis of piezoelectric coupled circular plate", Smart Mater. Struct., 10(2), 229. https://doi.org/10.1088/0964-1726/10/2/308
  126. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  127. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultrafast- rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  128. Wu, T. and Liu, G. (2001), "The generalized differential quadrature rule for fourth-order differential equations", Int. J. Numer. Meth. Eng., 50(8), 1907-1929. https://doi.org/10.1002/nme.102
  129. Xiong, Q.M., Chen, Z., Huang, J.T., Zhang, M., Song, H., Hou, X.F., Li, X.B. and Feng, Z.J. (2020), "v", Rare Metals, 39(5), 589-596. https://doi.org/10.1007/s12598-020-01385-6.
  130. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  131. Yang, Z. and Yang, J. (2009), "Connected vibrating piezoelectric bimorph beams as a wide-band piezoelectric power harvester", J. Intell. Mater. Syst. Struct., 20(5), 569-574. https://doi.org/10.1177/1045389X08100042.
  132. Yang, Z., Zhou, S., Zu, J. and Inman, D. (2018), "Highperformance piezoelectric energy harvesters and their applications", Joule. 2(4), 642-697. https://doi.org/10.1016/j.joule.2018.03.011.
  133. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic highorder computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal Pr., 165 108373. https://doi.org/10.1016/j.ymssp.2021.108373.
  134. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., 26(4), 469-480. https://doi.org/10.12989/sss.2020.26.4.469.
  135. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Wave. Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1948627.
  136. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. "Bending and stress responses of the hybrid axisymmetric system via statespace method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.
  137. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295.
  138. Zhou, S., Li, A. and Wang, B. (2016), "A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials", Int. J. Solid Struct., 80, 28-37. https://doi.org/10.1016/j.ijsolstr.2015.10.018.