DOI QR코드

DOI QR Code

Isolation and Identification of an Unreported Fungal Species in Korea and Novel Ice Nucleation Active Fungus: Fusarium diversisporum

  • Diane Avalos-Ruiz (School of Applied Biosciences, Kyungpook National University) ;
  • Gwang-Jae Lim (School of Applied Biosciences, Kyungpook National University) ;
  • Seong-Keun Lim (School of Applied Biosciences, Kyungpook National University) ;
  • Leonid N. Ten (School of Applied Biosciences, Kyungpook National University) ;
  • In-Kyu Kang (Department of Horticultural Science, Kyungpook National University) ;
  • Seung-Yeol Lee (School of Applied Biosciences, Kyungpook National University) ;
  • Hee-Young Jung (School of Applied Biosciences, Kyungpook National University)
  • Received : 2022.08.23
  • Accepted : 2022.11.25
  • Published : 2022.12.31

Abstract

In this study, the fungal strain KNUF-21-F39 was isolated from a declined apple tree (Malus domestica) in the Chungcheongbuk province in Korea. The strain KNUF-21-F39 presented a slow growth rate and a variety of macroconidia shapes and sizes ranging from ovoid to fusoid and 1- to 5-septate, primarily showing 3- and 4-septate, with "S" -shaped macroconidia rarely observed. The strain was identified based on morphological characteristics along with phylogenetic analysis performed using the internal transcribed spacer region (ITS) and partial sequences of translation elongation factor 1-α (tef1), RNA polymerase largest subunit (rpb1), and calmodulin (cal) genes. The fungal strain KNUF-21-F39 was identified as Fusarium diversisporum, which has not been previously reported in Korea. The ice nucleation activity (INA) of the strain was also evaluated, identifying the strain as positive for INA. This is the first report characterizing F. diversisporum as an IN-active fungal species.

Keywords

Acknowledgement

This work was carried out with the support of the Cooperative Research Program for Agriculture, Science and Technology Development (Project No. PJ014998022022), Rural Development Administration, Republic of Korea.

References

  1. Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, et al. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 2006;98:1076-87.  https://doi.org/10.1080/15572536.2006.11832635
  2. Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Bhat JD, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, et al. Families of Sordariomycetes. Fungal Divers 2016;79:1-317.  https://doi.org/10.1007/s13225-016-0369-6
  3. Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, et al. Redefined families of Sordariomycetes. Mycosphere 2020;11:305-1509.  https://doi.org/10.5943/mycosphere/11/1/7
  4. O'Donnell K, Ward TJ, Robert VARG, Crous PW, Geiser DM, Kang S. DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica 2015;43:583-95.  https://doi.org/10.1007/s12600-015-0484-z
  5. Dongzhen F, Xilin L, Xiaorong C, Wenwu Y, Yunlu H, Yi C, Jia C, Zhimin L, Litao G, Tuhong W, et al. Fusarium species and Fusarium oxysporum species complex genotypes associated with yam wilt in south-central China. Front Microbiol 2020;11:1964. 
  6. Aoki T, O'Donnell K, Geiser DM. Systematics of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol 2014;80:189-201.  https://doi.org/10.1007/s10327-014-0509-3
  7. Pouleur S, Richard C, Martin JG, Antoun H. Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum. Appl Environ Microbiol 1992;58:2960-4.  https://doi.org/10.1128/aem.58.9.2960-2964.1992
  8. Joly M, Attard E, Sancelme M, Deguillaume L, Guilbaud C, Morris CE, Amato P, Delort AM. Ice nucleation activity of bacteria isolated from cloud water. Atmos Environ 2013;70:392-400.  https://doi.org/10.1016/j.atmosenv.2013.01.027
  9. Huang S, Hu W, Chen J, Wu Z, Zhang D, Fu P. Overview of biological ice nucleating particles in the atmosphere. Environ Int 2021;146:106197. 
  10. Kunert AT, Pohlker ML, Tang K, Krevert CS, Wieder C, Speth KR, Hanson LE, Morris CE, Shmale III DG, Poschl U, et al. Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing. Biogeosciences 2019;16:4647-59.  https://doi.org/10.5194/bg-16-4647-2019
  11. Sherbakoff CD. Fusaria of Potatoes. 1st edition. Florida: Cornell University, Agricultural Experiment Station of the College of Agriculture; 1915. 
  12. Besharati M, Mohammadi A, Darvishnia M. Fusarium species associated with wheat crown and root tissues in the Eastern Iran. Arch Phytopathol Plant Prot 2017;50:123-33.  https://doi.org/10.1080/03235408.2016.1275423
  13. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols. A guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22. 
  14. O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci 1998;95:2044-9.  https://doi.org/10.1073/pnas.95.5.2044
  15. O'Donnell K, Sutton DA, Rinaldi MG, Sarver BAJ, Balajee SA, Schroers HJ, Summerbell RC, Robert VARG, Crous PW, Zhang N, et al. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. J Clin Microbiol 2010;48:3708-18.  https://doi.org/10.1128/JCM.00989-10
  16. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999;3:553-6.  https://doi.org/10.1080/00275514.1999.12061051
  17. Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, Razavi M, Gohari AM, Mehrabi R, Crous PW. Zymoseptoria gen. nov.: a new genus to accommodate Septorialike species occurring on graminicolous hosts. Persoonia 2011;26:57-69.  https://doi.org/10.3767/003158511X571841
  18. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-8. 
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-25. 
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-20.  https://doi.org/10.1007/BF01731581
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4.  https://doi.org/10.1093/molbev/msw054
  22. Lindow SE, Arny DC, Upper CD. Erwinia herbicola: A bacterial ice nucleus active in increasing frost injury to corn. Phytopathology 1978;68:523-7. https://doi.org/10.1094/Phyto-68-523
  23. Avalos-Ruiz D, Ten LN, Kim CK, Lee SY, Jung HY. Isolation and identification of ice nucleation active Fusarium strains from rapid apple declined trees in Korea. Plant Pathol J 2022;38:403-9.  https://doi.org/10.5423/PPJ.NT.04.2022.0051
  24. Gerlach W, Nirenberg H. The genus Fusarium-a pictorial atlas (1st ed.). Hamburg: Parey; 1982. p. 406. 
  25. Richard C, Martin JG, Pouleur S. Ice nucleation activity identification in some phytopathogenic Fusarium species. Phytoprotection 1996;77:83-92.  https://doi.org/10.7202/706104ar
  26. Kim YH, Kim YC, Cho BH, Kim KC. Ice-nucleation activity of Pseudomonas syringae isolated in Korea. Kor J Plant Pathol 1987;3:180-6. 
  27. Lim JY, Ryu DK, Kang MK, Jeon YH, Park DH. Draft genome sequences of Pseudomonas syringae pv. syringae strain WSPS007 causing bacterial shoot blight on apple. Kor J Microbiol 2019;55:80-2.