DOI QR코드

DOI QR Code

Three Unreported Fungi Isolated From Reservoirs in Korea: Mortierella biramosa, Paraphoma radicina, and Sordaria macrospora

  • Bora Nam (Department of Biological Science, College of Natural Sciences, Kunsan National University) ;
  • Hyang Burm Lee (Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Young-Joon Choi (Department of Biological Science, College of Natural Sciences, Kunsan National University)
  • Received : 2022.03.07
  • Accepted : 2022.06.13
  • Published : 2022.06.30

Abstract

Freshwater ecosystems have a large reserve of latent biological resources that play an essential ecological role, and have significant economic and social value. Fungi in freshwater are prospective materials that can be used in the food, medicine, and biomass energy fields. In this study, three promising fungal species were isolated from freshwater ecosystems in Korea. These isolates were identified as Mortierella biramosa, Paraphoma radicina, and Sordaria macrospora, based on their cultural and morphological characteristics, as well as molecular phylogenetic analyses. These species were previously unknown in Korea. The finding allows us to explore its physiological and biochemical characteristics in more detail and use them as biological resources.

Keywords

Acknowledgement

This study was supported by the Nakdonggang National Institute of Biological Resources (NNIBR).

References

  1. Bailey RC, Norris RH, Reynoldson TB. Bioassessment of freshwater ecosystems. Bioassessment of freshwater ecosystems: Using the reference condition approach. Boston: Springer; 2004. p. 1-15. 
  2. Carpenter SR, Stanley EH, Vander Zanden MJ. State of the World's freshwater ecosystems: Physical, chemical, and biological changes. Annu Rev Environ Resour 2011;36:75-99.  https://doi.org/10.1146/annurev-environ-021810-094524
  3. Sharma P, Slathia PS, Raina N, Bhagat D. Chapter 9 - Microbial diversity in freshwater ecosystems and its industrial potential. In: Bandh SA, Shafi S, Shameem N, editors. Freshwater Microbiology. Cambridge: Academic Press; 2019. p. 341-92. 
  4. Okafor N. Ecology of microorganisms in freshwater. In: Okafor N, editor. Environmental microbiology of aquatic and waste systems. Dordrecht: Springer Netherlands; 2011. p. 111-22. 
  5. Kalra R, Conlan XA, Goel M. Fungi as a potential source of pigments: Harnessing filamentous fungi. Fungal Divers 2020;8:369. 
  6. Kaur K, Verma RK. Chapter 2 - fungal resources: Current utilization, future prospects, and challenges. In: Singh J, Gehlot P, editors. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdom: Elsevier; 2020. p. 15-38. 
  7. Grossart H-P, van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K. Fungi in aquatic ecosystems. Nat Rev Microbiol 2019;17:339-54.  https://doi.org/10.1038/s41579-019-0175-8
  8. Krauss G-J, Sole M, Krauss G, Schlosser D, Wesenberg D, Barlocher F. Fungi in freshwaters: Ecology, physiology and biochemical potential. FEMS Microbiol Rev 2011;35:620-51.  https://doi.org/10.1111/j.1574-6976.2011.00266.x
  9. Grossart H-P, Wurzbacher C, James TY, Kagami M. Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol 2016;19:28-38.  https://doi.org/10.1016/j.funeco.2015.06.004
  10. Wurzbacher C, Warthmann N, Bourne EC, Attermeyer K, Allgaier M, Powell JR, Detering H, Mbedi S, Grossart H-P, Monaghan MT. High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany). MycoKeys 2016;16:17-44.  https://doi.org/10.3897/mycokeys.16.9646
  11. Ishida S, Nozaki D, Grossart H-P, Kagami M. Novel basal, fungal lineages from freshwater phytoplankton and lake samples. Environ Microbiol Rep 2015;7:435-41.  https://doi.org/10.1111/1758-2229.12268
  12. Jobard M, Rasconi S, Solinhac L, Cauchie HM, Sime-Ngando T. Molecular and morphological diversity of fungi and the associated functions in three European nearby lakes. Environ Microbiol 2012;14:2480-94.  https://doi.org/10.1111/j.1462-2920.2012.02771.x
  13. Comic L, Rankovic B, Novevska V, Ostojic A. Diversity and dynamics of the fungal community in Lake Ohrid. Aquat Biol 2010;9:169-76.  https://doi.org/10.3354/ab00248
  14. Goncalves VN, Vaz AB, Rosa CA, Rosa LH. Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 2012;82:459-71.  https://doi.org/10.1111/j.1574-6941.2012.01424.x
  15. Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanova L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, et al. Fungal biodiversity in aquatic habitats. Biodivers Conserv 2007;16:49-67.  https://doi.org/10.1007/s10531-006-9120-z
  16. Jones EBG, Pang K-L. Tropical aquatic fungi. Biodivers Conserv 2012;21:2403-23.  https://doi.org/10.1007/s10531-011-0198-6
  17. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990;172:4238-46.  https://doi.org/10.1128/jb.172.8.4238-4246.1990
  18. White T, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA GD SJ, White TJ, editor. PCR Protocols: A Guide to Methods and Applications. New York: Academic Press, Inc; 1990. p. 315-22. 
  19. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61:1323-30.  https://doi.org/10.1128/aem.61.4.1323-1330.1995
  20. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 2013;30:772-80.  https://doi.org/10.1093/molbev/mst010
  21. Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 2008;9:212. 
  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547-9.  https://doi.org/10.1093/molbev/msy096
  23. Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011;27:171-80.  https://doi.org/10.1111/j.1096-0031.2010.00329.x
  24. Morgan-Jones G, White JF. Studies in the genus Phoma. III. Paraphoma, a new genus to accommodate Phoma radicina. Mycotaxon 1983;18:57-65. 
  25. de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW. Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 2010;102:1066-81.  https://doi.org/10.3852/09-240
  26. Moslemi A, Ades PK, Crous PW, Groom T, Scott JB, Nicolas ME, Taylor PWJ. Paraphoma chlamydocopiosa sp. nov. and Paraphoma pye sp. nov., two new species associated with leaf and crown infection of pyrethrum. Plant Pathol. 2018;67:124-35.  https://doi.org/10.1111/ppa.12719
  27. Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 2010;65:1-60.  https://doi.org/10.3114/sim.2010.65.01
  28. El-Elimat T, Raja HA, Figueroa M, Al Sharie AH, Bunch RL, Oberlies NH. Freshwater fungi as a source of chemical diversity: A review. J Nat Prod 2021;84:898-916.  https://doi.org/10.1021/acs.jnatprod.0c01340
  29. El-Elimat T, Raja HA, Figueroa M, Falkinham JO, Oberlies NH. Isochromenones, isobenzofuranone, and tetrahydronaphthalenes produced by Paraphoma radicina, a fungus isolated from a freshwater habitat. Phytochemistry 2014;104:114-20.  https://doi.org/10.1016/j.phytochem.2014.04.006
  30. Magana-Duenas V, Cano-Lira JF, Stchigel AM. New Dothideomycetes from freshwater habitats in Spain. J Fungi 2021;7:1102. 
  31. Jeon YJ, Goh J, Mun HY. Diversity of fungi in brackish water in Korea. Kor J Mycol 2020;48:457-73. 
  32. Auerswald B. Sordaria macrospora. Hedwigia 1866;5:192. 
  33. Crous PW, Verkley GJM, Groenewald JZ, Samson RA. Fungal biodiversity. Utrecht: CBS-KNAW, Fungal Biodiversity Centre.; 2009. 
  34. Teichert I, Poggeler S, Nowrousian M. Sordaria macrospora: 25 years as a model organism for studying the molecular mechanisms of fruiting body development. Appl Microbiol Biotechnol 2020;104:3691-704.  https://doi.org/10.1007/s00253-020-10504-3
  35. Luo Z-L, Hyde KD, Liu J-K, Maharachchikumbura SSN, Jeewon R, Bao DF, Bhat DJ, Lin CG, Li WL, Yang J, et al. Freshwater Sordariomycetes. Fungal Divers 2019;99:451-660.  https://doi.org/10.1007/s13225-019-00438-1
  36. Froyd CA, Coffey EED, van der Knaap WO, van Leeuwen JFN, Tye A, Willis KJ. The ecological consequences of megafaunal loss: Giant tortoises and wetland biodiversity. Ecol Lett 2014;17:144-54.  https://doi.org/10.1111/ele.12203
  37. Ivanova H. Sordaria fimicola (Ascomycota, Sordariales) on Acer palmatum. Folia Oeco 2015;42:67-71. 
  38. Kirker GT, Wagner TL, Diehl SV. Relationship between wood-inhabiting fungi and Reticulitermes spp. in four forest habitats of northeastern Mississippi. Int Biodeterior Biodegrad 2012;72:18-25.  https://doi.org/10.1016/j.ibiod.2012.04.011
  39. Abdel-Azeem A, Salem F. Biodiversity of laccase producing fungi in Egypt. Mycosphere 2012;3:900-920.  https://doi.org/10.5943/mycosphere/3/6/4
  40. Souza A, da Costa M, Estrela L, Paz L. Cultural, morphological and morphometric ascpects of the Sordaria fimicola in leaves of massambara grass (Sorghum arundinaceum). Rev Agric Neotrop 2019;6:34-44.  https://doi.org/10.32404/rean.v6i2.1423
  41. Kuck U, Poggeler S, Nowrousian M, Nolting N, Engh I. Sordaria macrospora, a model system for fungal development. In: Anke T, Weber D, editors. Physiology and Genetics: Selected Basic and Applied Aspects. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 17-39. 
  42. Geiger M, Guitton Y, Vansteelandt M, Kerzaon I, Blanchet E, Robiou du Pont T, Frisvad JC, Hess P, Pouchus YF, Grovel O. Cytotoxicity and mycotoxin production of shellfish-derived Penicillium spp., a risk for shellfish consumers. Lett Appl Microbiol 2013;57:385-92.  https://doi.org/10.1111/lam.12143
  43. Borzykh OG, Zvereva LV. Mycobiota of the bivalve mollusk Anadara broughtoni (Schrenck, 1867) from various parts of peter the great Bay, Sea of Japan. Russ J Mar Biol 2015;41:321-3.  https://doi.org/10.1134/S1063074015040033
  44. Santos A, Hauser-Davis RA, Santos MJS, De Simone SG. Potentially toxic filamentous fungi associated to the economically important Nodipecten nodosus (Linnaeus, 1758) scallop farmed in southeastern Rio de Janeiro, Brazil. Mar Pollut Bull 2017;115:75-9.  https://doi.org/10.1016/j.marpolbul.2016.11.058
  45. Bornet ME, Flahault C. Sur quelques plantes vivant dans le test calcaire des mollusques. Bulletin de la SBF 1889;36:148-77. 
  46. Cai L, Hu D-M, Liu F, Hyde K, Jones EBG. 3. The molecular phylogeny of freshwater Sordariomycetes and discomycetes. In: Jones EBG, Hyde KD, Pang K-L, editors. Freshwater Fungi: and Fungal-like Organisms. Berlin, Boston: de Gruyter; 2014. p. 47-72. 
  47. Gams W. Two little-known species of Mortierella. Sydowia 1985;38:97-105. 
  48. Tieghem Pv. Nouvelles recherches sur les Mucorinees. Annales des Sciences Naturelles Botanique 1875;6:5-175. 
  49. Petkovits T, Nagy LG, Hoffmann K, Wagner L, Nyilasi I, Griebel T, Schnabelrauch D, Vogel H, Voigt K, Vagvolgyi C, et al. Data partitions, Bayesian analysis and phylogeny of the Zygomycetous fungal family Mortierellaceae, inferred from nuclear ribosomal DNA sequences. PLoS One 2011;6:e27507. 
  50. Ozimek E, Hanaka A. Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture 2021;11:7. 
  51. Wu D, Zhang M, Peng M, Sui X, Li W, Sun G. Variations in soil functional fungal community structure associated with pure and mixed plantations in typical temperate forests of China. Front Microbiol 2019;10:1636. 
  52. Li F, Chen L, Redmile-Gordon M, Zhang J, Zhang C, Ning Q, Li W. Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil. Land Degrad Dev 2018;29:1642-51.  https://doi.org/10.1002/ldr.2965
  53. Archer DB, Connerton IF, MacKenzie DA. Filamentous fungi for production of food additives and processing aids. Adv Biochem Engin/Biotechnol 2008;111:99-147. 
  54. Nguyen TTT, Lee HB. Characterization of a Zygomycete fungus, Mortierella minutissima from freshwater of Yeongsan river in Korea. Kor J Mycol 2016;44:346-9. 
  55. Nguyen TTT, Park SW, Pangging M, Lee HB. Molecular and morphological confirmation of three undescribed species of Mortierella from Korea. Mycobiology 2019;47:31-9.  https://doi.org/10.1080/12298093.2018.1551854
  56. Ellegaard-Jensen L, Aamand J, Kragelund BB, Johnson AH, Rosendahl S. Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation 2013;24:765-74.  https://doi.org/10.1007/s10532-013-9624-7
  57. Hyde KD, Hongsanan S, Jeewon R, McKenzie EHC, Jones EBG, Phookamsak R, Ariyawansa HA, Boonmee S, Zhao Q, Abdel-Aziz FA, et al. Fungal diversity notes 367-490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2016;80:1-270. https://doi.org/10.1007/s13225-016-0373-x