DOI QR코드

DOI QR Code

The Occurrence Climatology of Equatorial Plasma Bubbles: A Review

  • Kil, Hyosub (The Johns Hopkins University Applied Physics Laboratory)
  • Received : 2022.04.17
  • Accepted : 2022.06.05
  • Published : 2022.06.15

Abstract

Electron density irregularities in the equatorial ionosphere at night are understood in terms of plasma bubbles, which are produced by the transport of low-density plasma from the bottomside of the F region to the topside. Equatorial plasma bubbles (EPBs) have been detected by various techniques on the ground and from space. One of the distinguishing characteristics of EPBs identified from long-term observations is the systematic seasonal and longitudinal variation of the EPB activity. Several hypotheses have been developed to explain the systematic EPB behavior, and now we have good knowledge about the key factors that determine the behavior. However, gaps in our understanding of the EPB climatology still remain primarily because we do not yet have the capability to observe seed perturbations and their growth simultaneously and globally. This paper reviews the occurrence climatology of EPBs identified from observations and the current understanding of its driving mechanisms.

Keywords

Acknowledgement

This work was supported by National Science Foundation (no. AGS2029840), Air Force Multi-University Research Initiative (no. FA9559-16-1-0364), and Air Force Asian Office of Aerospace Research and Development (no. FA2386-21-1-4034) in the United States.

References

  1. Aa E, Zou S, Liu S, Statistical analysis of equatorial plasma irregularities retrieved from Swarm 2013-2019 observations, J. Geophys. Res. Space Phys. 125(4), e2019JA027022 (2020) https://doi.org/10.1029/2019ja027022
  2. Aarons J, Global morphology of ionospheric scintillations, Proceedings of the IEEE, 70, 360-378 (1982). https://doi.org/10.1109/PROC.1982.12314
  3. Aarons J, The longitudinal morphology of equatorial F layer irregularities relevant to their occurrence, Space Sci. Rev. 63, 209-243 (1993). https://doi.org/10.1007/BF00750769
  4. Abdu MA, Batista IS, Sobral JHA, A new aspect of magnetic declination control of equatorial spread F and F-region dynamo, J. Geophys. Res. 97, 14897-14904 (1992). https://doi.org/10.1029/92JA00826
  5. Abdu MA, Batista PP, Batista IS, Brum CGM, Carrasco AJ, et al., Planetary wave oscillations in mesospheric winds, equatorial evening prereversal electric field and spread F, Geophys. Res. Lett. 33, L07107 (2006). https://doi.org/10.1029/2005GL024837
  6. Abdu MA, Bittencourt JA, Batista IS, Magnetic declination control of the equatorial F-region dynamo electric field development and spread F, J. Geophys. Res. 86, 11443-11446 (1981). https://doi.org/10.1029/JA086iA13p11443
  7. Abdu MA, de Souza JR, Kherani EA, Batista IS, MacDougall JW, et al., Wave structure and polarization electric field development in the bottomside F layer leading to postsunset equatorial spread F, J. Geophys. Res. Space Phys. 120, 6930-6940 (2015). https://doi.org/10.1002/2015JA021235
  8. Anderson DN, Reinisch BW, Valladares C, Chau J, Veliz O, Forecasting the occurrence of ionospheric scintillation activity in the equatorial ionosphere on a day-to-day basis, J. Atmos. Sol. Terr. Phys. 66, 1567-1572 (2004). https://doi.org/10.1016/j.jastp.2004.07.010
  9. Basu S, Basu S, Equatorial scintillations: a review, J. Atmos. Terr. Phys. 43, 473-489 (1981). https://doi.org/10.1016/0021-9169(81)90110-0
  10. Basu S, Basu S, Khan, BK, Model of equatorial scintillations from in-situ measurements, Radio Sci. 11, 821-832 (1976). https://doi.org/10.1029?RS011i010p00821 https://doi.org/10.1029/RS011i010p00821
  11. Basu S, Kudeki E, Basu Su, Valladares CE, Weber EJ, et al., Scintillation, plasma drifts, and neutral winds in the equatorial ionosphere after sunset, J. Geophys. Res. 101, 26795-26809 (1996). https://doi.org/10.1029/96JA00760
  12. Beer T, Atmospheric Waves (John Wiley & Son, New York, NY, 1974).
  13. Burke WJ, Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1, J. Geophys. Res. 109, A12301 (2004). https://doi.org/10.1029/2004ja010583
  14. Burke WJ, Donatelli DE, Sagalyn RC, Kelley MC, Low density regions observed at high altitudes and their connection with equatorial spread F, Planet. Space Sci. 27, 593-601 (1979). https://doi.org/10.1016/0032-0633(79)90157-0
  15. Choi JM, Kil H, Kwak YS, Park J, Lee WK, et al., Periodicity in the occurrence of equatorial plasma bubbles derived from the C/NOFS observations in 2008-2012, J. Geophys. Res. Space Phys. 121 (2016). https://doi.org/10.1002/2016JA023528
  16. Fagundes PR, Sahai Y, Batista IS, Abdu MA, Bittencourt JA, et al., Observations of day-to-day variability in precursor signatures to equatorial F-region plasma depletions, Ann. Geophys. 17, 1053-1063 (1999). https://doi.org/10.1007/s00585-999-1053-x
  17. Fang TW, Akmaev RA, Stoneback RA, Fuller-Rowell T, Wang H, et al., Impact of midnight thermosphere dynamics on the equatorial ionospheric vertical drifts, J. Geophys. Res. Space Phys. 121, 4858-4868 (2016). https://doi.org/10.1002/2015JA022282
  18. Farley DT, Balsley B, Woodman RF, McClure JP, Equatorial spread F: implications of VHF radar observations, J. Geophys. Res. 75, 7199-7216 (1970). https://doi.org/10.1029/JA075i034p07199
  19. Farley DT, Bonelli E, Fejer BG, Larsen MF, The prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res. 91, 13723-13728 (1986). https://doi.org/10.1029/JA091iA12p13723
  20. Fejer BG, Scherliess L, de Paula ER, Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res. 104, 19859-19869 (1999). https://doi.org/10.1029/1999JA900271
  21. Gentile LC, Burke WJ, Roddy PA, Retterer JM, Tsunoda RT, Climatology of plasma density depletions observed by DMSP in the dawn sector, J. Geophys. Res. Space Phys. 116 (2011). https://doi.org/10.1029/2010ja016176
  22. Hanson WB, Sanatani S, Relationship between Fe+ ions and equatorial spread F, J. Geophys. Res. 76, 7761-7768 (1971). https://doi.org/10.1029/JA076i031p07761
  23. Henderson SB, Swenson CM, Christensen AB, Paxton LJ, Morphology of the equatorial anomaly and equatorial plasma bubbles using image subspace analysis of Global Ultraviolet Imager data, J. Geophys. Res. 110, A11306 (2005). https://doi.org/10.1029/2005JA011080
  24. Huang CS, de La Beaujardiere O, Roddy PA, Hunton DE, Ballenthin JO, et al., Large-scale quasiperiodic plasma bubbles: C/NOFS observations and causal mechanism, J. Geophys. Res. Space Phys. 118, 3602-3612 (2013a). https://doi.org/10.1002/jgra.50338
  25. Huang CS, de La Beaujardiere O, Roddy PA, Hunton DE, Ballenthin JO, et al., Long-lasting daytime equatorial plasma bubbles observed by the C/NOFS satellite, J. Geophys. Res. Space Phys. 118, 2398-2408 (2013b). https://doi.org/10.1002/jgra.50252
  26. Huang CS, Kelley MC, Nonlinear evolution of equatorial spread F: 1. on the role of plasma instabilities and spatial resonance associated with gravity wave seeding, J. Geophys. Res. 101, 283-292 (2009). https://doi.org/10.1029/95JA02211
  27. Huang CS, La Beaujardiere O, Roddy PA, Hunton DE, Liu JY, et al., Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008-2012), J. Geophys. Res. Space Phys. 119, 1186-1199 (2014). https://doi.org/10.1002/2013JA019212
  28. Hysell DL, Kudeki E, Chau JL, Possible ionospheric preconditioning by shear flow leading to equatorial spread F, Ann. Geophys. 23, 2647-2655 (2005). https://doi.org/10.5194/angeo-23-2647-2005
  29. Kelley MC, Larsen MF, LaHoz C, McClure JP, Gravity wave initiation of equatorial spread F: a case study, J. Geophys. Res. 86, 9087-9100 (1981) https://doi.org/10.1029/JA086iA11p09087
  30. Kil H, The morphology of equatorial plasma bubbles: a review, J. Astron. Space Sci. 32, 13-19 (2015). https://doi.org/10.5140/JASS.2015.32.1.13
  31. Kil H, Heelis RA, Global distribution of density irregularities in the equatorial ionosphere, J. Geophys. Res. Space Phys. 103, 407-417 (1998). https://doi.org/10.1029/97ja02698
  32. Kil H, Lee WK, Paxton LJ, Origin and distribution of daytime electron density irregularities in the low-latitude F region, J. Geophys. Res. Space Phys. 125, e2020JA028343 (2020). https://doi.org/10.1029/2020JA028343
  33. Kil H, Paxton LJ, Lee WK, Jee G. Daytime evolution of equatorial plasma bubbles observed by the first Republic of China satellite, Geophys. Res. Lett. 46, 5021-5027 (2019). https://doi.org/10.1029/2019gl082903
  34. Kil H, Paxton LJ, Oh SJ, Global bubble distribution seen from ROCSAT-1 and its association with the evening prereversal enhancement, J. Geophys. Res. Space Phys. 114, A06307 (2009). https://doi.org/10.1029/2008ja013672
  35. Klostermeyer J, Nonlinear investigation of the spatial resonance effect in the nighttime equatorial F region, J. Geophys. Res. 83, 3753-3760 (1978). https://doi.org10.1029/JA083iA08p03753
  36. Krall J, Huba JD, Ossakow SL, Joyce G, Makela JJ, et al., Modeling of equatorial plasma bubbles triggered by non-equatorial traveling ionospheric disturbances, Geophys. Res. Letts 38, L08103 (2011). https://doi.org/10.1029/2011GL046890
  37. Li G, Ning B, Liu L, Ren Z, Lei J, et al., The correlation of longitudinal/seasonal variations of evening equatorial pre-reversal drift and of plasma bubbles, Ann. Geophys. 25, 2571-2578 (2008). https://doi.org/10.5194/angeo-25-2571-2007
  38. Makela JJ, Vadas SL, Muryanto R, Duly T, Crowley G, Periodic spacing between consecutive equatorial plasma bubbles, Geophys. Res. Lett. 37, L14103 (2010). https://doi.org/10.1029/2010GL043968.
  39. Maruyama T, Matuura N, Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles, J. Geophys. Res. 89, 10903-10912 (1984). https://doi.org/10.1029/ja089ia12p10903
  40. McClure JP, Singh S, Bamgboye DK, Johnson FS, Kil H, Occurrence of equatorial F region irregularities: evidence for tropospheric seeding, J. Geophys. Res. Space Phys. 103, 29119-29135 (1998). https://doi.org/10.1029/98ja02749
  41. Park J, Luhr H, Stolle C, Rother M, Min KW, et al., The characteristics of field-aligned currents associated with equatorial plasma bubbles as observed by the CHAMP satellite, Ann. Geo. 27, 2785-2697 (2009). https://doi.org/10.5194/angeo-27-2685-2009
  42. Rottger J, Wave-like structures of large-scale equatorial spread-F irregularities, J. Atmos. Terr. Phys. 36, 1195-1196 (1973). https://http://dx.doi.org/10.1016/0021-9169(73)90016-0doi.org/10.1016/0021-9169(73)90016-0
  43. Rottger J, The macro-scale structure of equatorial spread-F irregularities, J. Atmos. Terr. Phys. 38, 97-101 (1976). https://doi.org/10.1016/0021-9169(76)90200-2
  44. Rottger J, Equatorial spread F by electric fields and atmospheric gravity waves generated by thunderstorms, J. Atmos. Terr. Phys. 43, 453-462 (1982). https://doi.org/10.1016/0021-9169(81)90108-2
  45. Singh S, Johnson FS, Power RA, Gravity wave seeding of equatorial plasma bubbles, J. Geophys. Res. 102, 7399-7410 (1997). https://doi.org/0148-0227/97/96JA03998509.00 https://doi.org/10.1029/96JA03998
  46. Smith JM, Heelis RA, The plasma environment associated with equatorial ionospheric irregularities. J. Geophy. Res. Space Phys. 123, 1583-1592 (2018). https://doi.org/10.1002/2017JA024933
  47. Smith JM, Rodrigues FS, de Paula ER, Radar and satellite investigations of equatorial evening vertical drifts and spread F, Annales Geophysicae, 33, 1403-1412 (2015). https://doi.org/10.5194/angeo-33-1403-2015
  48. Stolle C, Luhr H, Rother M, Balasis G, Magnetic signatures of equatorial spread F as observed by the CHAMP satellite, J. Geophys. Res. 111, A02304 (2006). https://doi.org/10.1029/2005ja011184
  49. Su SY, Chao CK, Liu CH, On monthly/seasonal/longitudinal variations of equatorial irregularity occurrences and their relationship with the post-sunset vertical drift velocities, J. Geophys. Res, 113, A05307 (2008). https://doi.org/10.1029/2007JA012809
  50. Su SY, Liu CH, Ho HH, Chao CK, Distribution characteristics of topside ionospheric density irregularities: equatorial versus midlatitude regions, J. Geophys. Res. 111, A06305 (2006). https://doi.org/10.1029/2005ja011330
  51. Sultan PJ, Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F, J. Geophys. Res. 101, 26875-26891 (1996). http://doi.org/10.1029/96JA00682
  52. Takahashi H, Tayler MJ, Pautet PD, Medeiros AF, Gobbi D et al., Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx Campaign, Ann. Geophys. 27, 1477-1487 (2009). https://doi.org/10.5194/angeo-27-1477-2009
  53. Takahashi H, Wrasse CM, Figueiredo CAOB, Barros D, Abdu MA, et al., Equatorial plasma bubble seeding by MSTIDs in the ionosphere, Prog. Earth Planet. Sci. 5, 32 (2018). https://doi.org/10.1186/s40645-018-0189-2
  54. Taori A, Parihar N, Ghodpage R, Dashora N, Sripathi S, et al., Probing the possible trigger mechanisms of an equatorial plasma bubble event based on multistation optical data, J. Geophys. Res. Space Phys. 120 (2015). https://doi.org/10.1002/2015JA021541
  55. Thampi SV, Yamamoto M, Tsunoda RT, Otsuka Y, Tsugawa TJ, et al., First observations of large-scale wave structure and equatorial spread F using CERTO radio beacon on the C/NOFS satellite, Geophys. Res. Lett. 36, L18111 (2009). https://doi.org/10.1029/2009GL039887
  56. Tsunoda RT, Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity, J. Geophys. Res. Space Phys. 90, 447-456 (1985). https://doi.org/10.1029/ja090ia01p00447
  57. Tsunoda RT, On seeding equatorial spread F during solstices, Geophys. Res. Lett. 37, L05102 (2010). https://doi.org/10.1029/2010GL042576
  58. Tsunoda RT, Bubenik DM, Thampi SV, Yamamoto M, On large-scale wave structure and equatorial spread F without a post-sunset rise of the F layer, Geophys. Res. Lett. 37, L07105 (2010). https://doi.org/10.1029/2009GL042357
  59. Tsunoda RT, White BR, On the generation and growth of equatorial backscatter plumes 1. Wave structure in the bottomside F layer, J. Geophys. Res. 86, 3610-3616 (1981) https://doi.org/10.1029/JA086iA05p03610
  60. Wan X, Xiong C, Rodriguez-Zuluaga J, Kervalishvili GN, Stolle C, et al., Climatology of the occurrence rate and amplitudes of local time distinguished equatorial plasma depletions observed by Swarm satellite, J. Geophys. Res. Space Phys. 123, 3014-3026 (2018). https://doi.org/10.1002/2017JA025072
  61. Watanabe S, Oya H, Occurrence characteristics of low latitude ionosphere irregularities observed by impedance probe on board the Hinotori satellite. J. Geomagn. Geoelectr. 38, 125-149 (1986). https://doi.org/10.5636/jgg.38.125
  62. Whitehead JD, Ionization disturbances caused by gravity waves in the presence of an electrostatic field and background wind, J. Geophys. Res. 76, 238-241 (1971). https://doi.org/10.1029/JA076i001p00238
  63. Yizengaw E, Groves KM, Longitudinal and seasonal variability of equatorial ionospheric irregularities and electrodynamics. Space Weather, 16, 946-968 (2018). https://doi.org/10.1029/2018SW001980
  64. Yokoyama T, Pfaff RF, Roddy PA, Yamamoto M, Otsuka Y, On postmidnight low-latitude ionospheric irregularities during solar minimum: 2. C/NOFS observations and comparisons with the Equatorial Atmosphere Radar, J. Geophys. Res. 116, A11326 (2011b). https://doi.org/10.1029/2011JA016798
  65. Yokoyama T, Yamamoto M, Otsuka Y, Nishioka M, Tsugawa T, et al., On postmidnight low-latitude ionospheric irregularities during solar minimum: 1. Equatorial Atmosphere Radar and GPS-TEC observations in Indonesia, J. Geophys. Res. 116, A11325 (2011a). https://doi.org/10.1029/2011JA016797
  66. Zalesak ST, Ossakow SL, Chaturvedi PK, Nonlinear equatorial spread F: the effect of neutral winds and background Pedersen conductivity, J. Geophys. Res. 87, 151-166 (1982). http://doi.org/10.1029/JA087iA01p00151