DOI QR코드

DOI QR Code

Moment of Inertia of Gas as a Source of Added Gravitational Field in Galaxies

  • Portnov, Yuriy A. (Moscow Automobile and Road Construction State Technical University (MADI))
  • 투고 : 2022.05.15
  • 심사 : 2022.05.30
  • 발행 : 2022.06.15

초록

In this paper we propose a new perspective for explaining galaxy rotation curves. We conjecture that there is a gravitational moment of inertia which, together with gravitational mass, contributes to the gravitational potential. We substantiate a formula for the potential created by the moment of inertia. We validate our model by computing orbital rotation velocities for several galaxies and showing that computed rotation velocities correspond to the observed ones. Our proposed approach is capable of accounting for constant gas velocities outside of a galactic disc without relying on the dark matter hypothesis. Furthermore, it addresses several problems faced by the application of the dark matter hypothesis, e.g., the absence of inward collapse of dark matter into a galaxy, the spherical distribution of dark matter around galaxies, and absence of traces of the effect of dark matter in two ultra-diffuse galaxies, NGC 1052-DF2, and NGC 1052-DF4.

키워드

과제정보

I am very grateful to my wife and daughter, who supported me for several months while I was working on the article.

참고문헌

  1. Albuquerque IFM, Heros CP, Closing the window on strongly interacting dark matter with IceCube, Phys. Rev. D. 81, 063510 (2010). https://doi.org/10.1103/PhysRevD.81.063510
  2. Asadov VV, Kechkin OV, Dark matter origin and mass generation for Dirac particles, Gravit. Cosmol. 15, 295-301 (2009). https://doi.org/10.1134/S0202289309040021
  3. Begeman KG, HI rotation curves of spiral galaxies. I-NGC 3198, Astron. Astrophys. 223, 47-60 (1989).
  4. Bidin CM, Carraro G, Mendez RA, Smith R, Kinematical and chemical vertical structure of the galactic thick disk. II. a lack of dark matter in the solar neighborhood, Astrophys. J. 751, 30 (2012). https://doi.org/10.1088/0004-637X/751/1/30
  5. Cassel S, Ghilencea DM, Kraml S, Lessa A, Ross GG, Fine-tuning implications for complementary dark matter and LHC SUSY searches, J. High Energy Phys. 5, 120 (2011). https://doi.org/10.1007/JHEP05(2011)120
  6. Cohen Y, Dokkum P, Danieli S, Romanowsky AJ, Abraham R, et al., The dragonfly nearby galaxies survey. V. HST/ACS observations of 23 low surface brightness objects in the fields of NGC 1052, NGC 1084, M96, and NGC 4258, Astrophys. J. 868, 96 (2018). https://doi.org/10.3847/1538-4357/aae7c8
  7. de Blok WJG, McGaugh SS, The dark and visible matter content of low surface brightness disc galaxies, Mon. Not. R. Astron. Soc. 290, 533-552 (1997). https://doi.org/10.1093/mnras/290.3.533
  8. Einasto J, Dark matter, Baltic Astron. 20, 231-240 (2011). https://doi.org/10.1515/astro-2017-0287
  9. Haghi H, Bazkiaei AE, Zonoozi AH, Roupa P, Declining rotation curves of galaxies as a test of gravitational theory, Mon. Not. R. Astron. Soc. 458, 4172-4187 (2016). https://doi.org/10.1093/mnras/stw573
  10. Ludlow AD, Benitez-Llambay A, Schaller M, Theuns T, Frenk CS, et al., Mass-discrepancy acceleration relation: a natural outcome of galaxy formation in cold dark matter halos, Phys. Rev. Lett. 118, 161103 (2017). https://doi.org/10.1103/PhysRevLett.118.161103
  11. Makarov D, Prugniel P, Terekhova N, Courtois H, Vauglin I. Hyper LEDA. III. The catalogue of extragalactic distances, Astron. Astrophys. 570, A13 (2014). https://doi.org/10.1051/0004-6361/201423496
  12. Moreno J, Danieli S, Bullock JS, Feldmann R, Hopkins PF, et al., Galaxies lacking dark matter produced by close encounters in a cosmological simulation, Nat. Astron. 6, 496-502 (2022). https://doi.org/10.1038/s41550-021-01598-4
  13. Neto GBL, Dark matter profile in clusters of galaxies, Braz. J. Phys. 35, 1159-1162 (2005). https://doi.org/10.1590/S0103-97332005000700042
  14. Portnov YA, Formation of the initial distribution of matter inhomogeneities in the era of radiation domination, Int. J. Geom. Methods Mod. Phys. 12, 1550097 (2015). https://doi.org/10.1142/S0219887815500978
  15. Portnov YA, The gravitational redshift of a optical vortex being different from that of an gravitational redshift plane of an electromagnetic wave, J. Astrophys. Astron. 39, 38 (2018). https://doi.org/10.1007/s12036-018-9530-9
  16. Portnov YA, On the invariance in the inhomogeneous Lorentz group SO(1,3) in the context of optical vortex description, Gen. Relativ. Gravit. 53, 11 (2021). https://doi.org/10.1007/s10714-021-02788-1
  17. Rubin VC, Ford WK Jr, Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions, Astrophys. J. 159, 379 (1970). https://doi.org/10.1086/150317
  18. Schweizer F, Whitmore BC, Rubin VC, Colliding and merging galaxies. II. SO galaxies with polar rings, Astron. J. 88, 909-925 (1983). https://doi.org/10.1086/113377
  19. van Dokkum P, Danieli S, Cohen Y, Merritt A, Romanowsky AJ, et al., A galaxy lacking dark matter, Nature. 555, 629-632 (2018). https://doi.org/10.1038/nature25767
  20. Verheijen MAW, The ursa major cluster of galaxies. V. H I rotation curve shapes and the Tully-Fisher relations, Astrophys. J. 563, 694-715 (2001). https://doi.org/10.1086/323887
  21. Vikhlinin A, Kravtsov A, Forman W, Jones C, Markevitch M, et al., Chandra sample of nearby relaxed galaxy clusters: mass, gas fraction, and mass-temperature relation, Astrophys. J. 640, 691-709 (2006). https://doi.org/10.1086/500288
  22. Volders LMJS, Neutral hydrogen in M 33 and M 101, Bull. Astron. Inst. Netherlands. 14, 323-334 (1959). https://doi.org/10.12691/ijp-1-6-5
  23. Weidinger M, Moller P, Fynbo JPU, The Lyman-α glow of gas falling into the dark matter halo of a z = 3 galaxy, Nature. 430, 999-1001 (2004). https://doi.org/10.1038/nature02793
  24. Zahid HJ, Sohn J, Geller MJ, Stellar velocity dispersion: linking quiescent galaxies to their dark matter halos, Astrophys. J. 859, 96 (2018). https://doi.org/10.3847/1538-4357/aabe31
  25. Zwicky F, Die rotverschiebung von extragalaktischen nebeln, Helv. Phys. Acta. 6, 110-127 (1933). https://doi.org/10.1007/s10714-008-0707-4
  26. Zwicky F, On the masses of nebulae and of clusters of nebulae, Astrophys. J. 86, 217-246 (1937). https://doi.org/10.1086/143864