DOI QR코드

DOI QR Code

Finite element analysis of granular column for various encasement conditions subjected to shear load

  • 투고 : 2021.12.17
  • 심사 : 2022.05.03
  • 발행 : 2022.06.25

초록

Granular columns have recently found widespread use in underground construction. The behaviour of granular columns under vertical loads has been extensively studied, specifically in relation to vertical load capacity obtained by bulging of the column body, including the behaviour after encasement of material. Determining the shear strength of loose soils reinforced with granular columns has received less attention. After the observations of lateral deformation near the toe of the embankment, attempts have been made to strengthen the lateral strength of granular columns. The purpose of this research is to look into the effects of different encasement conditions on the lateral load capacity of granular columns. This was accomplished by three-dimensional finite element analysis with FEM software. Various normal pressures and two different encasement configurations, namely single layer encasement and double layer encasement, with differing tensile strengths, were used in this study to determine their effect on lateral resistance. The failure envelope for a single column planted in loose sand was used to analyse the findings for three different granular column diameters, as well as the impact of different encasement conditions. According to the findings, the inclusion of a Granular Column enhanced the shear strength and overall stiffness of the loose sand bed, and the encasement of the Granular Column helped in deriving higher lateral resistance.

키워드

참고문헌

  1. Abusharar, S.W. and Han, J. (2011), "Two-dimensional deep-seated slope stability analysis of embankments over stone column improved soft clay", Eng. Geol., 120, 103-110. https://doi.org/10.1016/j.enggeo.2011.04.002.
  2. Aghili, E., Hosseinpour, I., Chenari, R.J. and Ahmadi, H. (2021), "Behavior of granular column-improved clay under cyclic shear loading", Transportation Geotech., 31, 100654. https://doi.org/10.1016/j.trgeo.2021.100654.
  3. Alamgir, M., Miura, N. and Pooorooshasb Madhav, M.R. (1996), "Deformation analysis of soft ground reinforced by columnarinclusions", Comput. Geotech., 18(4), 267-290. https://doi.org/10.1016/0266-352X (95)00034-8.
  4. Ali, K., Shahu, J.T. and Sharma, K.G. (2012), "Model tests on geosynthetic-reinforced stone columns: a comparative study", Geosynth. Int., 19(4), 292-305. https://doi.org/10.1680/gein.12.00016.
  5. Ali, K., Shahu, J.T. and Sharma, K.G. (2014), "Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement", Geosynth. Int., 21(2), 103-118. https://doi.org/10.1680/gein.14.00002.
  6. Almeida, M.S., Hosseinpour, I., Riccio, M. and Alexiew, D. (2015), "Behavior of geotextile-encased granular columns supporting test embankment on soft deposit", J. Geotech. Geoenviron. Eng., 141(3), 04014116. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001256.
  7. Almeida, M.S.S., Hosseinpour, I. and Riccio, M. (2013), "Performance of a geosynthetic-encased column (GEC) in soft ground: numerical and analytical studies", Geosynthetics Int., 20(4), 252-262. https://doi.org/10.1680/gein.13.00015.
  8. Ambily, A.P. and Gandhi, S.R. (2007), "Behavior of stone columns based on experimental and FEM analysis", J. Geotechgeoenviron. Eng. ASCE, 133(4), 405-415. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405).
  9. Aslani, M., Nazariafshar, J. and Ganjian, N. (2019), "Experimental study on shear strength of cohesive soils reinforced with stone columns", Geotech. Geol. Eng., 37(3), 2165-2188. https://doi.org/10.1007/s10706-018-0752-z.
  10. Ayadat, T., Hanna, A.M. and Hamitouche, A. (2008), "Soil improvement by internally reinforced stone column", Ground Improv., 161(2), 55-63. https://doi.org/10.1680/grim.2008.161.2.55.
  11. Barksdale, R.D. and Bachus, R.C. (1983), "Design and construction of stone columns", Vol.1. Report No. FHWA/ RD-83/026, National technical information service, Springfield, Virginia.
  12. Bergado, D.T. and Panichayatum, Sampaco, C.L. (1988), "Reinforcement of soft bangkok clay using granular piles", Proceedings of the international symposium on theory and practice of earth reinforcement, Kyushu, Japan.
  13. Bowles, J. (1997), "Foundation Analysis and Design 5th Ed", The McGraw-Hill Companies, Inc., New York, 308.
  14. Castro, J. and Sagaseta, C. (2011) "Deformation and consolidation around encased stone columns", Geotext. Geomembranes, 29(3), 268-276. https://doi.org/10.1016/j.geotexmem.2010.12.001.
  15. Cengiz, C., Kilic, I.E. and Guler, E. (2019), "On the shear failure mode of granular column embedded unit cells subjected to static and cyclic shear loads", Geotext. Geomembranes, 47, 193-202. https://doi.org/10.1016/j.geotexmem.2018.12.011.
  16. Chen, J.F., Li, L.Y., Xue, J.F. and Feng, S.Z. (2015), "Failure mechanism of geosynthetic encased stone columns in soft soils under embankment", Geotext. Geomembranes, 43(5), 424-431. https://doi.org/10.1016/j.geotexmem.2015.04.016.
  17. Dash, S.K. and Bora, M.C. (2013), "Influence of geosynthetic encasement on the performance of stone columns floating in soft clay", Can Geotech. J., 50(7), 754-765. https://doi.org/10.1139/cgj-2012-0437.
  18. Deb, K., Samadhiya, N.K. and Namdeo, J.B. (2010), "Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay", Geotext. Geomembranes, 29(2), 190-196. https://doi.org/10.1016/j.geotexmem.2010.06.004.
  19. Fattah, M.Y., Shlash, K.T. and Al-Waily, M.J.M. (2011), "Stress concentration ratio of model stone columns in soft clays", Geotech. Test. J., 34(1), 1. https://doi.org/10.1520/GTJ103060.
  20. Fattah, M.Y., Zabar, B.S. and Hassan, H.A. (2016), "Experimental analysis of embankment on ordinary and encased stone columns", Int. J. Geomech., 16(4), 04015102. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000579.
  21. Ghazavi, M. and Nazari Afshar, J. (2013), "Bearing capacity of geosynthetic encased stone columns", Geotext. Geomembranes, 38, 26-36. https://doi.org/10.1007/s13369-013-0709-8.
  22. Han, J. and Ye, S.L. (1992), "Settlement analysis of buildings on the soft clays stabilized by stone columns", Proceedings of The International Conference On Soil Improvement and Pile Foundations, Nanjing, China.
  23. Hasan M. and Samadhiya N.K. (2016), "Influence of combined vertical and horizontal reinforcement on granular piles in soft clays", Proceedings of the Indian Geotechnial Conference IGC2016, IIT Madras, Chennai, India, December.
  24. Hasan, M. and Samadhiya, N.K. (2017), "Performance of geosynthetic-reinforced granular piles in soft clays: Model tests and numerical analysis", Comput. Geotech., 87, 178-187. https://doi.org/10.1016/j.compgeo.2017.02.016.
  25. Hosseinpour, I., Almeida, M.S.S. and Riccio, M. (2015), "Full-scale load test and finite-element analysis of soft ground improved by geotextile-encased granular columns", Geosynthetics Int., 22(6), 428-438. https://doi.org/10.1680/jgein.15.00023.
  26. Hosseinpour, I., Riccio, M. and Almeida, M.S.S. (2014), "Numerical evaluation of a granular column reinforced by geosynthetics using encasement and laminated disks", Geotext. Geomembranes, 42(4), 363-373. https://doi.org/10.1016/j.geotexmem.2014.06.002.
  27. Hosseinpour, I., Soriano, C. and Almeida, M.S. (2019), "A comparative study for the performance of encased granular columns", J. Rock Mech. Geotech. Eng., 11(2), 379-388. https://doi.org/10.1016/j.jrmge.2018.12.002
  28. Hughes, J.M.O. and Withers, N.J. (1974), "Reinforcing of soft cohesive soils with granular columns", Ground Eng., 7(3), 42-49.
  29. Jamshidi Chenari, R., Karimpour Fard, M., Jamshidi Chenari, M., and Shamsi Sosahab, J. (2017), "Physical and numerical modeling of stone column behavior in loose sand", Int. J. Civil Eng., 17(2), 231-244. https://doi.org/10.1007/s40999-017-0223-6.
  30. Khabbazian, M., Kaliakin V.N. and Meehan, C.L. (2010), "Numerical study of the effect of geosynthetic encasement on the behaviour of granular columns", Geosynthetics Int., 17(3), 132-143. https://doi.org/10.1680/gein.2010.17.3.132.
  31. Khabbazian, M., Kaliakin, V.N. and Meehan, C.L. (2015), "Column supported embankments with geosynthetic encased columns: validity of the unit cell concept", Geotech. Geol. Eng., 33, 425-442. https://doi.org/10.1007/s10706-014-9826-8.
  32. Lo, S.R., Zhang, R. and Mak, J. (2010), "Geosynthetic-encased stone columns in soft clay: a numerical study", Geotext. Geomembranes, 28(3), 292-302. https://doi.org/10.1016/j.geotexmem.2009.09.015.
  33. Madhav, M.R., Sharma, J.K. and Sivakumar, V. (2009), "Settlement of and load distribution in a granular piled raft", Geomech. Eng., 1(1), 97-112. https://doi.org/10.12989/gae.2009.1.1.097.
  34. Mohapatra, S.R. and Rajagopal, K. (2017), "Undrained stability analysis of embankments supported on geosynthetic encased granular columns", Geosynth. Int., 24, 465-479. https://doi.org/10.1016/j.geotexmem.2016.01.002.
  35. Mohapatra, S.R., Rajagopal, K. and Sharma, J. (2016), "Direct shear tests on geosynthetic-encased granular columns", Geotext. Geomembranes, 44, 396-405. https://doi.org/10.1016/j.geotexmem.2016.01.002.
  36. Mohapatra, S.R., Rajagopal, K. and Sharma, J. (2017), "3 Dimensional numerical modeling of geosynthetic-encased granular columns", Geotext. Geomembranes, 45, 131-141. https://doi.org/10.1016/j.geotexmem.2017.01.004.
  37. Murugesan, S. and Rajagopal, K. (2009), "Shear load tests on stone columns with and without geosynthetic encasement", Geotech. Test. J., 32(1). https://doi.org/10.1520/gtj101219.
  38. Murugesan, S. and Rajagopal, K. (2010), "Studies on the behavior of single and group of geosynthetic encased stone columns", J. Geotech. Geoenviron. Eng., 136, 129-139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000187
  39. Nazariafshar J. and Aslani, M. (2020), "Effect of stress concentration ratio on shear strength of soft soils improved with stone columns", Iran J. Sci. Technol. T. Civil Eng., 45(1-4), 1-20. http://doi.org/10.1007/s40996-020-00391-z.
  40. Ng, K.S. and Tan, S.A. (2015), "Stress transfer mechanism in 2D and 3D unit cell models for stone column improved ground", Int. J. Geosynth. Ground Eng., 1(3). https://doi.org/10.1007/s40891-014-0003-1.
  41. Prasad, S.S.G. and Satyanarayana, P.V.V. (2016), "Improvement of soft soil performance using stone columns improved with circular geogrid discs", Indian J. Sci. Technol., 9(30), 1-6. https://doi.org/10.17485/ijst/2016/v9i30/99186.
  42. Pulko, B., Majes, B. and Logar, J. (2011), "Geosynthetic-encased stone columns: analytical calculation model", Geotext. Geomembranes, 29(1), 29-39. https://doi.org/10.1016/j.geotexmem.2010.06.005.
  43. Shamsi, M., Ghanbari, A. and Nazariafshar, J. (2019), "Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers", Geomech. Eng., 19(4), 329-342. https://doi.org/10.12989/gae.2019.19.4.329.
  44. Tan, X., Feng, L., Hu, Z. and Abbas, S.M. (2021), "The equivalent shear strength properties of the composite soil reinforced by stone columns: an FDM-DEM-coupled numerical evaluation", Environ. Earth Sci., 80(4), 1-12. https://doi.org/10.1007/s12665-021-09412-0.
  45. Vekli, M., Aytekin, M., Ikizler, B. and Calik, U. (2012), "Experimental and numerical investigation of slope stabilization by stone columns", Nat. Hazards, 64(1), 797-820. https://doi.org/10.1007/s11069-012-0272-8.
  46. Yoo, C. and Kim, S.B. (2009), "Numerical modeling of geosynthetic-encased granular column-reinforced ground", Geosynth. Int., 16(3), 116-126. https://doi.org//10.1680/gein.2009.16.3.116.
  47. Zhang, L. and Zhao, M.H. (2015), "Deformation analysis of geotextile-encased stone columns", Int. J. Geomech., 15(3), 1-10. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000389.