Acknowledgement
This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1A4A407990411) and a Korea Institute for Advancement of Technology (KIAT) grant funded by the Korean government (MOTIE) (N0002429, The Competency Development Program for Industry Specialist).
References
- Arnold, C. and Korner, C. (2021), "In-situ electron optical measurement of thermal expansion in electron beam powder bed fusion", Add. Manuf., 46, 102213. https://doi.org/10.1016/j.addma.2021.102213.
- Bian, P., Shi, J., Liu, Y. and Xie, Y. (2020), "Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel", Optic. Las. Technol., 132, 106477. https://doi.org/10.1016/j.optlastec.2020.106477.
- Caltanissetta, F., Grasso, M., Petro, S. and Colosimo, B.M. (2018), "Characterization of in-situ measurements based on layerwise imaging in laser powder bed fusion", Add. Manuf., 24, 183-199. https://doi.org/10.1016/j.addma.2018.09.017.
- Choi, T.Y. (2020), "Machine learning based predictive modeling of dimensional quality in direct energy deposition with SUS316L", Graduate School of UNIST.
- Dastjerdi, A.A., Movahhedy, M.R. and Akbari, J. (2017), "Optimization of process parameters for reducing warpage in selected laser sintering of polymer parts", Add. Manuf., 18, 285-294. https://doi.org/10.1016/j.addma.2017.10.018.
- Desai, P.D. and Ho, C.Y. (1978), "Thermal linear expansion of nine selected AISI stainless steels", Thermophysical and Electronic Properties Information Analysis Center Lafayette In.
- Foroozmehr, E. and Kovacevic, R. (2010), "Effect of path planning on the laser powder deposition process: Thermal and structural evaluation", Int. J. Adv. Manuf. Technol., 51(5), 659-669. https://doi.org/10.1007/s00170-010-2659-6.
- Frazier, W.E. (2014), "Metal additive manufacturing: A review", J. Mater. Eng. Perform., 23(6), 1917-1928. https://doi.org/10.1007/s11665-014-0958-z.
- Gere, J.M. and Goodno, B.J. (2009), Mechanics of Materials, Cengage Learning. Inc., Independence, KY.
- Khanzadeh, M., Chowdhury, S., Marufuzzaman, M., Tschopp, M.A. and Bian, L. (2018), "Porosity prediction: Supervised-learning of thermal history for direct laser deposition", J. Manuf. Syst., 47, 69-82. https://doi.org/10.1016/j.jmsy.2018.04.001.
- Kim, Y.W. and Jewong, W.B. (2020), "Defect classification of refrigerant compressor using variance estimation of the transfer function between pressure pulsation and shell acceleration", Smart Struct. Syst., 25(2), 255-264. https://doi.org/10.12989/sss.2020.25.2.255.
- Kumar, L.J. and Krishnadas Nair, C.G. (2017), "Current trends of additive manufacturing in the aerospace industry", Advances in 3D Printing & Additive Manufacturing Technologies, Springer, Singapore.
- Kyrsanidi, A.K., Kermanidis, T.B. and Pantelakis, S.G. (2000), "An analytical model for the prediction of distortions caused by the laser forming process", J. Mater. Proc. Technol., 104(1-2), 94-102. https://doi.org/10.1016/S0924-0136(00)00520-3.
- Lee, J. and Chung, H. (2020), "Experimental investigation of deposition pattern on the temperature and distortion of direct energy deposition-based additive manufactured part", Appl. Sci., 10(21), 7653. https://doi.org/10.3390/app10217653.
- Lee, Y., Lee, S., Zhao, X.G., Lee, D., Kim, T., Jung, H. and Kim, N. (2018), "Impact of UV curing process on mechanical properties and dimensional accuracies of digital light processing 3D printed objects", Smart Struct. Syst., 22(2), 161-166. https://doi.org/10.12989/sss.2018.22.2.161.
- Lewandowski, J.J. and Seifi, M. (2016), "Metal additive manufacturing: A review of mechanical properties", Ann. Rev. Mater. Res., 46, 151-186. https://doi.org/10.1146/annurevmatsci-070115-032024.
- Li, C., Liu, Z.Y., Fang, X.Y. and Guo, Y.B. (2018), "Residual stress in metal additive manufacturing", Procedia Cirp, 71, 348-353. https://doi.org/10.1016/j.procir.2018.05.039.
- Mageshwaran, G., Polisetti, S.R., Jeevahan, J. and Joseph, G.B. (2017), "Enhancement of uniform temperature distribution during casting solidification by methoding process", Int. J. Ambient Energy, 38(8), 774-780. https://doi.org/10.1080/01430750.2016.1222959.
- Matsunawa, A., Mizutani, M., Katayama, S. and Seto, N. (2003), "Porosity formation mechanism and its prevention in laser welding", Weld. Int., 17(6), 431-437. https://doi.org/10.1533/wint.2003.3138.
- Paul, R., Anand, S. and Gerner, F. (2014), "Effect of thermal deformation on part errors in metal powder based additive manufacturing processes", J. Manuf. Sci. Eng., 136(3), 031009. https://doi.org/10.1115/1.4026524.
- Rubino, F., Astarita, A. and Carlone, P. (2018), "Thermomechanical finite element modeling of the laser treatment of titanium cold-sprayed coatings", Coating., 8(6), 219. https://doi.org/10.3390/coatings8060219.
- Sanchez, R., Aisa, J., Martinez, A. and Mercado, D. (2012), "On the relationship between cooling setup and warpage in injection molding", Measure., 45(5), 1051-1056. https://doi.org/10.1016/j.measurement.2012.01.039.
- Shi, Y., Yao, Z., Shen, H. and Hu, J. (2006), "Research on the mechanisms of laser forming for the metal plate", Int. J. Mach. Tool. Manuf., 46(12-13), 1689-1697. https://doi.org/10.1016/j.ijmachtools.2005.09.016.
- Sim, J., Kim, S., Park, H.J. and Choi, J.H. (2020), "A tutorial for feature engineering in the prognostics and health management of gears and bearings", Appl. Sci., 10(16), 5639. https://doi.org/10.3390/app10165639.
- Srivastava, S., Garg, R.K., Sharma, V.S. and Sachdeva, A. (2021), "Measurement and mitigation of residual stress in wire-arc additive manufacturing: A review of macro-scale continuum modelling approach", Arch. Comput. Meth. Eng., 28(5), 3491-3515. https://doi.org/10.1007/s11831-020-09511-4.
- Stavropoulos, P. and Foteinopoulos, P. (2018), "Modelling of additive manufacturing processes: A review and classification", Manuf. Rev., 5, 2. https://doi.org/10.1051/mfreview/2017014.
- Vafadar, A., Guzzomi, F., Rassau, A. and Hayward, K. (2021), "Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges", Appl. Sci., 11(3), 1213. https://doi.org/10.3390/app11031213.
- Venkatkumar, D. and Ravindran, D. (2016), "3D finite element simulation of temperature distribution, residual stress and distortion on 304 stainless steel plates using GTA welding", J. Mech. Sci. Technol., 30(1), 67-76. https://doi.org/10.1007/s12206-015-1208-5.
- Wang, H., Zhu, Q., Li, J., Mao, J., Hu, S. and Zhao, X. (2019), "Identification of moving train loads on railway bridge based on strain monitoring", Smart Struct. Syst., 23(3), 263-278. https://doi.org/10.12989/sss.2019.23.3.263.
- Zeng, C., Tian, W., Liao, W.H. and Hua, L. (2016), "Microstructure and porosity evaluation in laser-cladding deposited Ni-based coatings", Surf. Coating. Technol., 294, 122-130. https://doi.org/10.1016/j.surfcoat.2016.03.083.
- Zhang, Z., Liu, Z. and Wu, D. (2021), "Prediction of melt pool temperature in directed energy deposition using machine learning", Add. Manuf., 37, 101692. https://doi.org/10.1016/j.addma.2020.101692.