Acknowledgement
This research was supported by UNDERGROUND CITY OF THE FUTURE program funded by the Ministry of Science and ICT.
References
- Akcay, S., Atapour-Abarghouei, A. and Breckon, T.P. (2019), "GANomaly: Semi-supervised anomaly detection via adversarial training", Asian Conference Computer Vision 2018, Perth Western, Australia, December.
- Amar, M., Gondal, I. and Wilson, C. (2015), "Vibration spectrum imaging: A novel bearing fault classification approach", IEEE Trans. Ind. Electron., 62(1), 494-502. https://doi.org/10.1109/TIE.2014.2327555.
- Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J. (2000), "LOF: Identifying density-based local outliers", Proceedings of the 2000 ACM Sigmod International Conference on Management of Data, Dallas, USA, May.
- Case Western Reserve University Bearing Data Center (2022), Case Western Reserve University, Cleveland, USA. https://engineering.case.edu/bearingdatacenter.
- Choi, S., Akin, B., Rahimian, M.M. and Toliyat, H.A. (2012), "Performance-oriented electric motors diagnostics in modern energy conversion systems", IEEE Trans. Ind. Electron., 59(2), 1266-1277. https://doi.org/10.1109/TIE.2011.2158037.
- da Silva, A.M., Povinelli, R.J. and Demerdash, N.A.O. (2008), "Induction machine broken bar and stator short-circuit fault diagnostics based on three-phase stator current envelopes", IEEE Trans. Ind. Electron., 55(3), 1310-1318. https://doi.org/10.1109/TIE.2007.909060.
- Dai, X. and Gao, Z. (2013), "From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis", IEEE Trans. Ind. Inform., 9(4), 2226-2238. https://doi.org/10.1109/TII.2013.2243743.
- Data challenge on PHMAP 2021 (2021), Asian Pacific Conference of the Prognostics and Health Management Society 2021, Seoul, Korea. http://phmap.org/data-challenge.
- Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014), "Rich feature hierarchies for accurate object detection and semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, June.
- Golan, I. and El-Yaniv, R. (2018), "Deep anomaly detection using geometric transformations", Proceeding of NeurIPS 2018, Montreal, Canada, December.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014), "Generative adversarial networks", Proceeding of NeurIPS 2014, Montreal, Canada, December.
- Guo, L., Chen, J. and Li, X. (2009), "Rolling bearing fault classification based on envelope spectrum and support vector machine", J. Vib. Control, 15(9), 1349-1363. https://doi.org/10.1177/1077546308095224.
- Hoang, D.T. and Kang, H.J. (2019), "Rolling element bearing fault diagnosis using convolutional neural network and vibration image", Cognit. Syst. Res., 53, 42-50. https://doi.org/10.1016/j.cogsys.2018.03.002.
- Isermann, R. (1984), "Process fault detection based on modeling and estimation methods-A survey", Automatica, 20(4), 387-404. https://doi.org/10.1016/0005-1098(84)90098-0.
- Jia, F., Lei, Y., Lu, N. and Xing, S. (2018), "Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization", Mech. Syst. Signal Pr., 110, 349-367. https://doi.org/10.1016/j.ymssp.2018.03.025.
- Jiang, W., Hong, Y., Zhou, B., He, X. and Cheng, C. (2019), "A GAN-based anomaly detection approach for imbalanced industrial time series", IEEE Access, 7, 143608-143619. https://doi.org/10.1109/ACCESS.2019.2944689.
- Jing, L. and Tian, Y. (2020), "Self-supervised visual feature learning with deep neural networks: A survey", IEEE Trans. Pattern Anal. Mach. Intell., 43(11), 4037-4058. https://doi.org/10.1109/tpami.2020.2992393.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Proceeding of NeurIPS 2012, Tahoe, USA, December.
- LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), "Gradient-based learning applied to document recognition", Proc. IEEE, 86(11), 2278-2323. https://doi.org/10.1109/5.726791.
- Meng, Z., Guo, X., Pan, Z., Sun, D. and Liu, S. (2019), "Data segmentation and augmentation methods based on raw data using deep neural networks approach for rotating machinery fault diagnosis", IEEE Access, 7, 79510-79522. https://doi.org/10.1109/ACCESS.2019.2923417.
- Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-morello, B., Zerhouni, N., Varnier, C., Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-morello, B., Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Morello, B., Zerhouni, N. and Varnier, C. (2012), "PRONOSTIA : An experimental platform for bearings accelerated degradation tests", Proc. IEEE Int. Conf. Prog. Health Manage., Denver, USA, June.
- Noroozi, M. and Favaro, P. (2016), "Unsupervised learning of visual representations by solving jigsaw puzzles", Proceeding of European Conference on Computer Vision, Amsterdam, Netherlands, October.
- Oh, H., Jung, J.H., Jeon, B.C. and Youn, B.D. (2018), "Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis", IEEE Trans. Ind. Electron., 65(4), 3539-3549. https://doi.org/10.1109/TIE.2017.2752151.
- Randall, R.B. (2010), Vibration-based Condition Monitoring, John Wiley & Sons, Ltd , West Sussex, UK.
- Ren, S., He, K., Girshick, R. and Sun, J. (2017), "Faster R-CNN: Towards real-time object detection with region proposal networks", Proceeding of NeurIPS 2014, Montreal, Canada, December.
- Ruff, L., Vandermeulen, R.A., Gornitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Muller, E. and Kloft, M. (2018), "Deep one-class classification", Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, July.
- Schlegl, T., Seebock, P., Waldstein, S.M., Schmidt-Erfurth, U. abd Langs, G. (2017), "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery", arXiv preprint arXiv:1703.05921.
- Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. and Williamson, R.C. (2001), "Estimating the support of a high-dimensional distribution", Neur. Comput., 13, 1443-1471. https://doi.org/10.1162/089976601750264965.
- Shelhamer, E., Long, J. and Darrell, T. (2017), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, June.
- Srividya, A., Verma, A.K. and Sreejith, B. (2009), "Automated diagnosis of rolling element bearing defects using time-domain features and neural networks", Int. J. Min., Reclam. Environ., 23(3), 206-215. https://doi.org/10.1080/17480930902916437.
- Sutrisno, E., Oh, H., Vasan, A.S.S. and Pecht, M. (2012), "Estimation of remaining useful life of ball bearings using data driven methodologies", 2012 IEEE Conference on Prognostics and Health Management, June.
- Tao, S., Zhang, T., Yang, J., Wang, X. and Lu, W. (2015), "Bearing fault diagnosis method based on stacked autoencoder and softmax regression", 2015 34th Chinese Control Conference, 6331-6335. https://doi.org/10.1109/ChiCC.2015.7260634.
- Tian, J., Azarian, M.H. and Pecht, M. (2015), "Rolling element bearing fault detection using density-based clustering", 2014 International Conference on Prognostics and Health Management, June.
- Wang, H., Li, S., Song, L. and Cui, L. (2019), "A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals", Comput. Indus., 105, 182-190. https://doi.org/10.1016/j.compind.2018.12.013.
- Yin, S., Ding, S.X., Xie, X. and Luo, H. (2014), "A review on basic data-driven approaches for industrial process monitoring", IEEE Trans. Ind. Electron., 61(11), 6418-6428. https://doi.org/10.1109/TIE.2014.2301773.
- Yoo, Y. and Baek, J.G. (2018), "A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network", Appl. Sci., 8(7), 1102. https://doi.org/10.3390/app8071102.
- Zeiler, M.D. and Fergus, R. (2014), "Visualizing and understanding convolutional networks", Proceeding of European Conference on Computer Vision, Zurich, Switzerland, September.
- Zhang, R., Isola, P. and Efros, A.A. (2016), "Colorful Image Colorization", Proceeding of European Conference on Computer Vision, Amsterdam, Netherlands, October.