DOI QR코드

DOI QR Code

Expression and Functional Analysis of cofilin1-like in Craniofacial Development in Zebrafish

  • Jin, Sil (Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Jeon, Haewon (Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Choe, Chong Pyo (Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • 투고 : 2021.12.28
  • 심사 : 2022.03.09
  • 발행 : 2022.03.15

초록

Pharyngeal pouches, a series of outgrowths of the pharyngeal endoderm, are a key epithelial structure governing facial skeleton development in vertebrates. Pouch formation is achieved through collective cell migration and rearrangement of pouch-forming cells controlled by actin cytoskeleton dynamics. While essential transcription factors and signaling molecules have been identified in pouch formation, regulators of actin cytoskeleton dynamics have not been reported yet in any vertebrates. Cofilin1-like (Cfl1l) is a fish-specific member of the Actin-depolymerizing factor (ADF)/Cofilin family, a critical regulator of actin cytoskeleton dynamics in eukaryotic cells. Here, we report the expression and function of cfl1l in pouch development in zebrafish. We first showed that fish cfl1l might be an ortholog of vertebrate adf, based on phylogenetic analysis of vertebrate adf and cfl genes. During pouch formation, cfl1l was expressed sequentially in the developing pouches but not in the posterior cell mass in which future pouch-forming cells are present. However, pouches, as well as facial cartilages whose development is dependent upon pouch formation, were unaffected by loss-of-function mutations in cfl1l. Although it could not be completely ruled out a possibility of a genetic redundancy of Cfl1l with other Cfls, our results suggest that the cfl1l expression in the developing pouches might be dispensable for regulating actin cytoskeleton dynamics in pouch-forming cells.

키워드

과제정보

We thank Jinsung Lim for technical assistance. This work was supported by Gyeongsang National University academic support (to H. J), by the Global Ph.D. Fellowship program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019H1A2A1075288) (to S.J), and by a grant from Basic Science Research Program through the NRF funded by the Ministry of Science and ICT (2019R1A2C1004704) (to C.P.C).

참고문헌

  1. Abe H, Obinata T, Minamide LS, Bamburg JR (1996) Xenopus laevis actin-depolymerizing factor/cofilin: A phosphorylation-regulated protein essential for development. J Cell Biol 132:871-885. https://doi.org/10.1083/jcb.132.5.871
  2. Agnew BJ, Minamide LS, Bamburg JR (1995) Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J Biol Chem 270:17582-17587. https://doi.org/10.1074/jbc.270.29.17582
  3. Agrawal PB, Joshi M, Savic T, Chen Z, Beggs AH (2012) Normal myofibrillar development followed by progressive sarcomeric disruption with actin accumulations in a mouse Cfl2 knockout demonstrates requirement of cofilin-2 for muscle maintenance. Hum Mol Genet 21:2341-2356. https://doi.org/10.1093/hmg/dds053
  4. Ashworth S, Teng B, Kaufeld J, Miller E, Tossidou I, Englert C, Bollig F, Staggs L, Roberts ISD, Park JK, Haller H, Schiffer M (2010) Cofilin-1 inactivation leads to proteinuria: Studies in zebrafish, mice and humans. PLOS ONE 5:e12626. https://doi.org/10.1371/journal.pone.0012626
  5. Baker M (2014) Gene editing at CRISPR speed. Nat Biotechnol 32:309-312. https://doi.org/10.1038/nbt.2863
  6. Choe CP, Collazo A, Trinh LA, Pan L, Moens CB, Crump JG (2013) Wnt-dependent epithelial transitions drive pharyngeal pouch formation. Dev Cell 24:296-309. https://doi.org/10.1016/j.devcel.2012.12.003
  7. Choe CP, Crump JG (2014) Tbx1 controls the morphogenesis of pharyngeal pouch epithelia through mesodermal Wnt11r and Fgf8a. Development 141:3583-3593. https://doi.org/10.1242/dev.111740
  8. Choe CP, Crump JG (2015) Eph-Pak2a signaling regulates branching of the pharyngeal endoderm by inhibiting late-stage epithelial dynamics. Development 142:1089-1094. https://doi.org/10.1242/dev.115774
  9. Crump JG, Maves L, Lawson ND, Weinstein BM, Kimmel CB (2004) An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning. Development 131:5703-5716. https://doi.org/10.1242/dev.01444
  10. Dickmeis T, Mourrain P, Saint-Etienne L, Fischer N, Aanstad P, Clark M, Strahle U, Rosa F (2001) A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev 15:1487-1492. https://doi.org/10.1101/gad.196901
  11. Driscoll DA, Budarf ML, Emanuel BS (1992) A genetic etiology for DiGeorge syndrome: Consistent deletions and microdeletions of 22q11. Am J Hum Genet 50:924-933.
  12. Edlund RK, Ohyama T, Kantarci H, Riley BB, Groves AK (2014) Foxi transcription factors promote pharyngeal arch development by regulating formation of FGF signaling centers. Dev Biol 390:1-13. https://doi.org/10.1016/j.ydbio.2014.03.004
  13. Fukuda R, Gunawan F, Ramadass R, Beisaw A, Konzer A, Mullapudi ST, Gentile A, Maischein HM, Graumann J, Stainier DYR (2019) Mechanical forces regulate cardiomyocyte myofilament maturation via the VCL-SSH1-CFL axis. Dev Cell 51:62-77.E5. https://doi.org/10.1016/j.devcel.2019.08.006
  14. Graham A (2008) Deconstructing the pharyngeal metamere. J Exp Zool B Mol Dev Evol 310:336-344. https://doi.org/10.1002/jez.b.21182
  15. Grevellec A, Tucker AS (2010) The pharyngeal pouches and clefts: Development, evolution, structure and derivatives. Semin Cell Dev Biol 21:325-332. https://doi.org/10.1016/j.semcdb.2010.01.022
  16. Gurniak CB, Perlas E, Witke W (2005) The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev Biol 278:231-241. https://doi.org/10.1016/j.ydbio.2004.11.010
  17. Herzog W, Sonntag C, von der Hardt S, Roehl HH, Varga ZM, Hammerschmidt M (2004) Fgf3 signaling from the ventral diencephalon is required for early specification and subsequent survival of the zebrafish adenohypophysis. Development 131:3681-3692. https://doi.org/10.1242/dev.01235
  18. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JRJ, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227-229. https://doi.org/10.1038/nbt.2501
  19. Ikeda S, Cunningham LA, Boggess D, Hawes N, Hawes N, Hobson CD, Sundberg JP, Naggert JK, Smith RS, Nishina PM (2003) Aberrant actin cytoskeleton leads to accelerated proliferation of corneal epithelial cells in mice deficient for destrin (actin depolymerizing factor). Hum Mol Genet 12:1029-1036. https://doi.org/10.1093/hmg/ddg112
  20. Jeon H, O J, Jin S, Lim J, Choe CP (2019) A role for buttonhead in the early head and trunk development in the beetle Tribolium castaneum. Dev Reprod 23:63-72. https://doi.org/10.12717/dr.2019.23.1.063
  21. Jin S, O J, Stellabotte F, Choe CP (2018) Foxi1 promotes late-stage pharyngeal pouch morphogenesis through ectodermal Wnt4a activation. Dev Biol 441:12-18. https://doi.org/10.1016/j.ydbio.2018.06.011
  22. Kikuchi Y, Agathon A, Alexander J, Thisse C, Waldron S, Yelon D, Thisse B, Stainier DYR (2001) Casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev 15:1493-1505. https://doi.org/10.1101/gad.892301
  23. Kremneva E, Makkonen MH, Skwarek-Maruszewska A, Gateva G, Michelot A, Dominguez R, Lappalainen P (2014) Cofilin-2 controls actin filament length in muscle sarcomeres. Dev Cell 31:215-226. https://doi.org/10.1016/j.devcel.2014.09.002
  24. Kuure S, Cebrian C, Machingo Q, Lu BC, Chi X, Hyink D, D'Agati V, Gurniak C, Witke W, Costantini F (2010) Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis. PLOS Genet 6:e1001176. https://doi.org/10.1371/journal.pgen.1001176
  25. Lappalainen P, Fedorov EV, Fedorov AA, Almo SC, Drubin DG (1997) Essential functions and actin-binding surfaces of yeast cofilin revealed by systematic mutagenesis. EMBO J 16:5520-5530. https://doi.org/10.1093/emboj/16.18.5520
  26. Lappalainen P, Kessels MM, Cope MJTV, Drubin DG (1998) The ADF homology (ADF-H) domain: A highly exploited actin-binding module. Mol Biol Cell 9:1951-1959. https://doi.org/10.1091/mbc.9.8.1951
  27. Li L, Ning G, Yang S, Yan Y, Cao Y, Wang Q (2019) BMP signaling is required for nkx2.3-positive pharyngeal pouch progenitor specification in zebrafish. PLOS Genet 15:e1007996. https://doi.org/10.1371/journal.pgen.1007996
  28. Lin CW, Yen ST, Chang HT, Chen SJ, Lai SL, Liu YC, Chan TH, Liao WL, Lee SJ (2010) Loss of cofilin 1 disturbs actin dynamics, adhesion between enveloping and deep cell layers and cell movements during gastrulation in zebrafish. PLOS ONE 5:e15331. https://doi.org/10.1371/journal.pone.0015331
  29. Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF, Scambler PJ, Bradley A, Baldini A (2001) Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97-101. https://doi.org/10.1038/35065105
  30. Liu YH, Lin TC, Hwang SPL (2020) Zebrafish Pax1a and Pax1b are required for pharyngeal pouch morphogenesis and ceratobranchial cartilage development. Mech Dev 161:103598. https://doi.org/10.1016/j.mod.2020.103598
  31. Lovely CB, Swartz ME, McCarthy N, Norrie JL, Eberhart JK (2016) Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish. Development 143:2000-2011. https://doi.org/10.1242/dev.129379
  32. Miller CT, Schilling TF, Lee K, Parker J, Kimmel CB (2000) Sucker encodes a zebrafish Endothelin-1 required for ventral pharyngeal arch development. Development 127:3815-3828. https://doi.org/10.1242/dev.127.17.3815
  33. Moriyama K, Iida K, Yahara I (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1:73-86. https://doi.org/10.1046/j.1365-2443.1996.05005.x
  34. Munsie LN, Desmond CR, Truant R (2012) Cofilin nuclear-cytoplasmic shuttling affects cofilin-actin rod formation during stress. J Cell Sci 125:3977-3988. https://doi.org/10.1242/jcs.097667
  35. Nissen RM, Yan J, Amsterdam A, Hopkins N, Burgess SM (2003) Zebrafish foxi one modulates cellular responses to Fgf signaling required for the integrity of ear and jaw patterning. Development 130:2543-2554. https://doi.org/10.1242/dev.00455
  36. Obinata T, Nagaoka-Yasuda R, Ono S, Kusano K, Mohri K, Ohtaka Y, Yamashiro S, Okada K, Abe H (1997) Low molecular-weight G-actin binding proteins involved in the regulation of actin assembly during myofibrillogenesis. Cell Struct Funct 22:181-189. https://doi.org/10.1247/csf.22.181
  37. Ohashi K (2015) Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ 57:275-290. https://doi.org/10.1111/dgd.12213
  38. Okada K, Inohaya K, Mise T, Kudo A, Takada S, Wada H (2016) Reiterative expression of pax1 directs pharyngeal pouch segmentation in medaka. Development 143:1800-1810. https://doi.org/10.1242/dev.130039
  39. Olson HM, Nechiporuk AV (2021) Lamellipodia-like protrusions and focal adhesions contribute to collective cell migration in zebrafish. Dev Biol 469:125-134. https://doi.org/10.1016/j.ydbio.2020.10.007
  40. Ono S (2007) Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int Rev Cytol 258:1-82. https://doi.org/10.1016/S0074-7696(07)58001-0
  41. Peters H, Neubuser A, Kratochwil K, Balling R (1998) Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 12:2735-2747. https://doi.org/10.1101/gad.12.17.2735
  42. Piotrowski T, Ahn D, Schilling TF, Nair S, Ruvinsky I, Geisler R, Rauch GJ, Haffter P, Zon LI, Zhou Y, Foott H, Dawid IB, Ho RK (2003) The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development 130:5043-5052. https://doi.org/10.1242/dev.00704
  43. Piotrowski T, Nusslein-Volhard C (2000) The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev Biol 225:339-356. https://doi.org/10.1006/dbio.2000.9842
  44. Quinlan R, Martin P, Graham A (2004) The role of actin cables in directing the morphogenesis of the pharyngeal pouches. Development 131:593-599. https://doi.org/10.1242/dev.00950
  45. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221-231. https://doi.org/10.1016/S0092-8674(00)80732-1
  46. Shishkin S, Eremina L, Pashintseva N, Kovalev L, Kovaleva M (2016) Cofilin-1 and other ADF/cofilin superfamily members in human malignant cells. Int J Mol Sci 18:10. https://doi.org/10.3390/ijms18010010
  47. Sievers F, Higgins DG (2021) The clustal omega multiple alignment package. In: Katoh K (ed), Multiple Sequence Alignment. Methods in Molecular Biology, vol. 2231. Humana, New York, NY, pp 3-16.
  48. Solomon KS, Kudoh T, Dawid IB, Fritz A (2003) Zebrafish foxi1 mediates otic placode formation and jaw development. Development 130:929-940. https://doi.org/10.1242/dev.00308
  49. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  50. Tallafuss A, Bally-Cuif L (2003) Tracing of her5 progeny in zebrafish transgenics reveals the dynamics of midbrain-hindbrain neurogenesis and maintenance. Development 130:4307-4323. https://doi.org/10.1242/dev.00662
  51. Tran HT, Delvaeye M, Verschuere V, Descamps E, Crabbe E, Van Hoorebeke L, McCrea P, Adriaens D, Van Roy F, Vleminckx K (2011) ARVCF depletion cooperates with Tbx1 deficiency in the development of 22q11.2DS-like phenotypes in Xenopus. Dev Dyn 240:2680-2687. https://doi.org/10.1002/dvdy.22765
  52. Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM (2018) Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360:981-987. https://doi.org/10.1126/science.aar4362
  53. Wakayama Y, Fukuhara S, Ando K, Matsuda M, Mochizuki N (2015) Cdc42 mediates Bmpinduced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell 32:109-122. https://doi.org/10.1016/j.devcel.2014.11.024
  54. Yonezawa N, Nishida E, Ohba M, Seki M, Kumagai H, Sakai H (1989) An actin-interacting heptapeptide in the cofilin sequence. Eur J Biochem 183:235-238. https://doi.org/10.1111/j.1432-1033.1989.tb14918.x
  55. Zuniga E, Rippen M, Alexander C, Schilling TF, Crump JG (2011) Gremlin 2 regulates distinct roles of BMP and Endothelin 1 signaling in dorsoventral patterning of the facial skeleton. Development 138:5147-5156. https://doi.org/10.1242/dev.067785
  56. Zuniga E, Stellabotte F, Crump JG (2010) Jagged-Notch signaling ensures dorsal skeletal identity in the vertebrate face. Development 137:1843-1852. https://doi.org/10.1242/dev.049056