DOI QR코드

DOI QR Code

The mitochondrial genome of Tremoctopus violaceus (Octopoda, Tremoctopodidae) and its phylogenetic consideration

  • Received : 2021.11.29
  • Accepted : 2022.01.19
  • Published : 2022.03.31

Abstract

The complete mitochondrial genome of Tremoctopus violaceus was sequenced to analyze its organization and phylogenetic status within the order Octopoda. The mitochondrial genome of T. violaceus had a structure and organization similar to that of other Octopoda. The content of the nucleotides A, C, G, and T was 31.68 %, 7.71 %, 20.02 %, and 40.58 %, respectively. All protein-coding genes (PCG) began with the ATG codon, excluding ND4 and ATP6, which began with ATC and ATT, respectively, and terminated with TAG, TAA, TA, or T. Codons for isoleucine were the most used codons, whereas those for arginine were used the least. Two extra tRNAs, trnN and trnL, were found in the control region. These tRNAs have a D-armless structure. The control region had excess A + T content (83.16 %) and a stem-loop structure with two elements, which is reported for the first time in Octopoda by our study. Bayesian inference using 13 PCG revealed that Octopus and Octopodidae were polyphyletic, and that Tremoctopodidae diverged relatively earlier within Octopoda. The mitochondrial genome of T. violaceus and its characteristics may help to understand the evolutionary history of Octopoda and establish a marine biodiversity conservation strategy.

Keywords

Acknowledgement

All authors thank the research funding of the Jeju Special Self-Governing Province.

References

  1. Baert JM, Eisenhauer N, Janssen CR, De Laender F. Biodiversity effects on ecosystem functioning respond unimodally to environmental stress. Ecol Lett. 2018;21:1191-9. https://doi.org/10.1111/ele.13088
  2. Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313-9. https://doi.org/10.1016/j.ympev.2012.08.023
  3. Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27:1767-80. https://doi.org/10.1093/nar/27.8.1767
  4. Carlini DB, Young RE, Vecchione M. A molecular phylogeny of the Octopoda (Mollusca: Cephalopoda) evaluated in light of morphological evidence. Mol Phylogenet Evol. 2001;21:388-97. https://doi.org/10.1006/mpev.2001.1022
  5. Chen J, Wang W. Genetic diversity and genetic differentiation of Megalobrama populations inferred by mitochondrial markers. Genes Genomics. 2021;43:1119-32. https://doi.org/10.1007/s13258-021-01126-8
  6. Cheng R, Zheng X, Ma Y, Li Q. The complete mitochondrial genomes of two octopods Cistopus chinensis and Cistopus taiwanicus: revealing the phylogenetic position of the genus Cistopus within the order Octopoda. PLOS ONE. 2013;8:e84216. https://doi.org/10.1371/journal.pone.0084216
  7. Chiu YW, Chang CW, Lin HD, Shen KN. The complete mitogenome of the winged argonaut Argonauta hians and its phylogenetic relationships in Octopoda. Conserv Genet Resour. 2018;10:359-62. https://doi.org/10.1007/s12686-017-0824-z
  8. Clayton DA. Replication of animal mitochondrial DNA. Cell. 1982;28:693-705. https://doi.org/10.1016/0092-8674(82)90049-6
  9. Cui P, Ji R, Ding F, Qi D, Gao H, Meng H, et al. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): an evolutionary history of camelidae. BMC Genomics. 2007;8:241. https://doi.org/10.1186/1471-2164-8-241
  10. Danic-Tchaleu G, Heurtebise S, Morga B, Lapegue S. Complete mitochondrial DNA sequence of the European flat oyster Ostrea edulis confirms Ostreidae classification. BMC Res Notes. 2011;4:400. https://doi.org/10.1186/1756-0500-4-400
  11. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772.
  12. Donath A, Juhling F, Al-Arab M, Bernhart SH, Reinhardt F, Stadler PF, et al. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019;47:10543-52. https://doi.org/10.1093/nar/gkz833
  13. Finn JK. Family Tremoctopodidae. In: Jereb P, Roper CFE, Norman MD, Finn JK, editors. Cephalopods of the world: an annotated and illustrated catalogue of Cephalopod species known to date. Rome: FAO; 2016. p. 240-3.
  14. Isbell F, Cowles J, Dee LE, Loreau M, Reich PB, Gonzalez A, et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol Lett. 2018;21:763-78. https://doi.org/10.1111/ele.12928
  15. Jarosova A, Puza V, Zurovcova M. The complete mitochondrial genome of the facultative entomopathogenic nematode Oscheius chongmingensis (Rhabditida: Rhabditidae). Mitochondrial DNA A. 2016;27:3109-10. https://doi.org/10.3109/19401736.2015.1007288
  16. Kondow A, Suzuki T, Yokobori S, Ueda T, Watanabe K. An extra tRNAGly(U*CU) found in ascidian mitochondria responsible for decoding non-universal codons AGA/AGG as glycine. Nucleic Acids Res. 1999;27:2554-9. https://doi.org/10.1093/nar/27.12.2554
  17. Kuhn K, Streit B, Schwenk K. Conservation of structural elements in the mitochondrial control region of Daphnia. Gene. 2008;420:107-12. https://doi.org/10.1016/j.gene.2008.05.020
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547-9. https://doi.org/10.1093/molbev/msy096
  19. Kumazawa Y, Ota H, Nishida M, Ozawa T. Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Mol Biol Evol. 1996;13:1242-54. https://doi.org/10.1093/oxfordjournals.molbev.a025690
  20. Laslett D, Canback B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24:172-5. https://doi.org/10.1093/bioinformatics/btm573
  21. Li T, Yang J, Li Y, Cui Y, Xie Q, Bu W, et al. A mitochondrial genome of Rhyparochromidae (Hemiptera: Heteroptera) and a comparative analysis of related mitochondrial genomes. Sci Rep. 2016;6:35175. https://doi.org/10.1038/srep35175
  22. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955-64. https://doi.org/10.1093/nar/25.5.955
  23. Magallon-Gayon E, del Rio-Portilla MA, de los Angeles Barriga-Sosa I. The complete mitochondrial genomes of two octopods of the eastern Pacific Ocean: Octopus mimus and 'Octopus' fitchi (Cephalopoda: Octopodidae) and their phylogenetic position within Octopoda. Mol Biol Rep. 2020;47:943-52. https://doi.org/10.1007/s11033-019-05186-8
  24. Morrison DA. How and where to look for tRNAs in Metazoan mitochondrial genomes, and what you might find when you get there. 2010. http://arxiv.org/abs/1001.3813
  25. O'Connor MI, Gonzalez A, Byrnes JEK, Cardinale BJ, Duffy JE, Gamfeldt L, et al. A general biodiversity-function relationship is mediated by trophic level. Oikos. 2017;126:18-31. https://doi.org/10.1111/oik.03652
  26. Oh DJ, Jung YH. Mitochondrial genome of Japanese amberjack, Seriola quinqueradiata, and yellowtail amberjack, Seriola lalandi. Mitochondrial DNA B Resour. 2019;4:826-7. https://doi.org/10.1080/23802359.2019.1567281
  27. Oh DJ, Yang KS, Jung YH. The mitochondrial genome of the Jeju ground beetle Carabus smaragdinus monilifer (Coleoptera, Carabidae). Mitochondrial DNA B Resour. 2019;5:39-40.
  28. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470-4. https://doi.org/10.1038/290470a0
  29. Pons J, Bover P, Bidegaray-Batista L, Arnedo MA. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics. 2019;20:665. https://doi.org/10.1186/s12864-019-6026-1
  30. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539-42. https://doi.org/10.1093/sysbio/sys029
  31. Schultheis AS, Weigt LA, Hendricks AC. Arrangement and structural conservation of the mitochondrial control region of two species of Plecoptera: utility of tandem repeat-containing regions in studies of population genetics and evolutionary history. Insect Mol Biol. 2002;11:605-10. https://doi.org/10.1046/j.1365-2583.2002.00371.x
  32. Sumida M, Kanamori Y, Kaneda H, Kato Y, Nishioka M, Hasegawa M, et al. Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the Japanese pond frog Rana nigromaculata. Genes Genet Syst. 2001;76:311-25. https://doi.org/10.1266/ggs.76.311
  33. Tang Y, Zheng X, Ma Y, Cheng R, Li Q. The complete mitochondrial genome of Amphioctopus marginatus (Cephalopoda: Octopodidae) and the exploration for the optimal DNA barcoding in Octopodidae. Conserv Genet Resour. 2018;10:115-8. https://doi.org/10.1007/s12686-017-0777-2
  34. Thomas RF. Systematics, distribution, and biology of cephalopods of the genus Tremoctopus (Octopoda: Tremoctopodidae). Bull Mar Sci. 1977;27:353-92.
  35. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876-82. https://doi.org/10.1093/nar/25.24.4876
  36. Uribe JE, Zardoya R. Revisiting the phylogeny of Cephalopoda using complete mitochondrial genomes. J Molluscan Stud. 2017;83:133-44. https://doi.org/10.1093/mollus/eyw052
  37. Wei SJ, Shi M, Chen XX, Sharkey MJ, van Achterberg C, Ye GY, et al. New views on strand asymmetry in insect mitochondrial genomes. PLOS ONE. 2010;5:e12708. https://doi.org/10.1371/journal.pone.0012708
  38. Yi CH, Yoon M, Kim JM, Kim IH, Cho IY, An HS. Genetic analysis and population genetic structure of hard-shelled mussel, Mytilus coruscus Gould 1861 (Mytiloida: Mytilidae) from the coasts of South Korea based on mitochondrial cytochrome oxidase (COI) gene sequences. Genes Genomics. 2021;43:577-85. https://doi.org/10.1007/s13258-021-01073-4
  39. Yokobori S, Fukuda N, Nakamura M, Aoyama T, Oshima T. Long-term conservation of six duplicated structural genes in cephalopod mitochondrial genomes. Mol Biol Evol. 2004;21:2034-46. https://doi.org/10.1093/molbev/msh227
  40. Yokobori S, Oshima T, Wada H. Complete nucleotide sequence of the mitochondrial genome of Doliolum nationalis with implications for evolution of urochordates. Mol Phylogenet Evol. 2005;34:273-83. https://doi.org/10.1016/j.ympev.2004.10.002
  41. Yu X, Tan W, Zhang H, Jiang W, Gao H, Wang W, et al. Characterization of the complete mitochondrial genome of Harpalus sinicus and its implications for phylogenetic analyses. Genes. 2019;10:724. https://doi.org/10.3390/genes10090724