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change in the oocyte pool in humans and mice. The human predic-
tions were made based on collective study reports published since 
1960 and those that are currently available via PubMed (Figure 1A) 
[2-8]. Similarly, predictions were also made in mice because they are 
widely used as animal models for researching human fertility (Figure 
1C) [9-18]. Briefly, the predictions in humans indicate that an ovary 
contains approximately 300,000 oocytes at birth (600,000 per per-
son). The oocyte pool decreases in size throughout the entire repro-
ductive lifespan, down to half by the onset of puberty and one-third 
by the age of 20. Interestingly, substantial variation in the oocyte 
pool size is seen by the age of 40 (Figure 1B), but this variation subse-
quently disappears. Eventually, the human oocyte pool becomes 
close to zero by the age of 50 years, when most women reach meno-
pause. A similar declining pattern of the oocyte pool is also seen in 
mice, indicating that there is a regulatory mechanism that is com-
mon to both species. 

There is a continuing trend worldwide for the current generation 
of women to plan to bear children at a considerably later time of life 
than in previous generations. This trend creates a risk that when the 
time to have a child arrives, the oocyte pool may not be large 
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The oocyte pool is the primary determinant of 
reproductive lifespan 

In women of reproductive age, the size of the oocyte pool (the to-
tal number of oocytes in the ovaries) is the primary predictor of fer-
tility [1]. It is well established that the oocyte pool can be as large as 
a few million during the fetal stage, but decreases significantly to a 
million or less at birth. Here, we report the predicted patterns of 
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enough to support fertility even with help from assisted reproduc-
tive technology. No method currently exists for precisely assessing 
the oocyte pool. Instead, a few methods are used as clinical assess-
ments of the oocyte pool, including measurements of blood levels of 
anti-Müllerian hormone (AMH) alone or together with follicle-stimu-
lating hormone, the levels of which are affected by the number of 
follicles in the ovary and the amount of estradiol synthesized by the 
follicles, respectively [19,20]. AMH is a peptide hormone produced 
by the granulosa cells of the primary and secondary follicles and re-
leased into the bloodstream. Therefore, the blood level of AMH is 
used as a proxy of the size of the oocyte pool, and this method has 
been adopted by most in vitro fertilization (IVF) clinics to assess the 
size of their patients’ oocyte pool. Low or high blood AMH levels are 
used as a clinical marker to predict whether ovulation can be in-
duced in an IVF patient or to determine how many oocytes can be 
retrieved upon inducing ovulation. However, neither AMH nor folli-
cle-stimulating hormone levels are reflective of the actual size of the 
oocyte pool. Indeed, these levels do not change for the entire fertile 
lifespan even though the oocyte pool continues to decrease in size; 
they only begin to change when the oocyte pool becomes so small 
that not enough primordial follicles can be recruited to the growth 
phases. Interestingly, in a survey performed with 796 infertility clinics 
asking which test or factor best predicts fertility, 80% of respondents 
stated that age was the best predictor [21]. Why age? The oocyte 
pool decreases nonstop even when a woman’s fertility is at its peak 
or she is in her teens or 20s. As of 2021, no consensus exists regard-
ing the cause(s) of the continued decline of the oocyte pool, but it is 
believed to be a multifactorial phenomenon. In the following sec-
tions, we summarize reported causes of the decline that are backed 
by experimental or observational data. Additionally, the hypothesis 
that ovulatory inflammation is a contributing factor to the decline of 
the oocyte pool will be discussed. 

Contributing factors to the decline of the oocyte 
pool 

The peak size of the oocyte pool is established during fetal devel-
opment, specifically during the transitional period of mid-to-late 
gestation [22]. Upon reaching the peak, the pool begins to decrease, 
primarily via a process called oocyte attrition, throughout the rest of 
the gestational period [23,24]. After birth, the oocyte pool continues 
to decrease due to a variety of factors including, but not limited to, 
follicular atresia, meiotic errors, ovulation, environmental toxicants, 
medical drugs, and possibly some other factors that are yet to be dis-
covered (Figure 2). 

Figure 1. Lifetime changes in the oocyte pool in humans and mice. (A) 
The graph depicts the cumulative human data from the seven most 
relevant and reliable published articles that claim that oocyte counting 
was done in non-pathological ovaries. (B) This is a replica of the human 
oocyte pool, but only representing the age groups of 30–55 years. 
(C) The graph contains cumulative data collected from the 10 most 
relevant and reliable published articles. The reliability of published 
data was judged by an outlier test. The numbers in the parentheses 
are the numbers of articles used to calculate the average oocyte 
numbers in each age group. The gray area represents mean±standard 
error of the mean. Data analysis and graph-plotting were conducted 
using GraphPad Prism 5 (GraphPad Inc., La Jolla, CA, USA).
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1. Perinatal oocyte loss 
Immediately prior to or after birth, the ovary loses oocytes via oo-

cyte attrition, which is mediated by immune cells infiltrating the fetal 
ovaries [25] or apoptosis triggered by DNA breaks [26,27]. Further-
more, autophagy, ferroptosis, and necrosis are also known to cause 
oocyte demise. Autophagy is a cell recycling pathway that involves 
the fusion of organelles with lysosomes for degradation [28-30]. Fer-
roptosis is a type of programmed cell death involving intracellular 
iron and oxidative phospholipids [22,31]. Necrosis is an inflammato-
ry cell death process that results in swelling and eventually cell rup-
ture [32]. 

2. Follicular atresia 
After birth, a subset of dormant primordial follicles is recruited into 

a growth phase, which continues throughout the entire reproductive 
lifespan. Some of them grow and develop into preantral follicles, and 
eventually release oocytes via ovulation. However, the majority of 
the recruited follicles die during the growth phase; they eventually 
degenerate and are removed from the ovary. This phenomenon is 
called follicular atresia and is often triggered by the death of a granu-
losa cell in a follicle [22], eventually leading to the death of most 
granulosa cells and oocytes. Decreased estrogen production in the 
follicle or a milieu with increased androgen levels is a known cause 
of the initial death of granulosa cells [33-36]. In addition, erroneous 
signaling between the oocyte and granulosa cells also causes 
mis-regulation in the meiotic arrest of oocytes and follicular atresia 
[37-40].  

3. Environmental toxicants  
Humans are constantly exposed to environmental toxicants via in-

halation, ingestion, or contact. Recent studies have shown that an 
alarming number of environmental toxicants can directly or indirect-
ly damage oocytes. For example, oocytes in an ovary that is exposed 
to cadmium die due to an increased level of reactive oxygen species 
(ROS), subsequent DNA damage, and mitochondrial disruption in 
the oocytes [41]. Di(n-butyl) phthalate, an industrial plasticizer and 
stabilizer, kills oocytes by activating apoptosis pathways upon expo-
sure in animals [42]. Nonylphenol, a commonly used industrial mate-
rial similar to laundry detergents, has been shown to alter the ex-
pression of more than 800 genes in mouse oocytes, increase ROS 
levels, and eventually eliminate oocytes [43]. Further, a variety of en-
docrine-disrupting chemicals bind to steroid receptors (e.g., estro-
gen or progesterone receptors), synergistically disrupt hormonal bal-
ance, and directly or indirectly harm oocytes [44-46]. Unlike oocyte 
attrition and follicular atresia, which are mostly triggered by internal 
factors, environmental toxicants are from external sources and there-
fore preventable to some degree. 

4. Medical treatments 
Multiple drugs are used to cull harmful cells, particularly in cancer 

patients. These drugs primarily target cell-cycle regulators, making 
the ovary a vulnerable organ to such medical treatment. When given 
to a patient, these drugs inevitably impact cells in the ovary because 
a substantial proportion of ovarian cells undergo cell proliferation 
(granulosa cells in follicles at various stages) and meiosis (oocytes). 
Indeed, it is well known that young female cancer patients who re-
ceive chemotherapy suffer from premature ovarian insufficiency 
(POI) [47,48]. Chemotherapeutic drugs such as cyclophosphamide, 
cisplatin, vincristine, and doxorubicin are all reported to induce POI 
[49-51]. In addition to targeting cell cycle regulators, some chemo-

Figure 2. Contributing factors to the decline of the oocyte pool. Internal factors leading to the decline of the oocyte pool include oocyte 
attrition, follicular atresia, and meiotic errors. External factors, such as environmental toxicants and medical treatments, can either trigger 
internal factors or directly cause the reduction of the oocyte pool.

https://doi.org/10.5653/cerm.2021.0491718

Clin Exp Reprod Med 2022;49(1):16-25



therapeutic drugs “burn out” the oocyte pool. For example, cyclo-
phosphamide stimulates follicle activation in oocytes and granulosa 
cells, thereby pushing an excessive number of primordial follicles 
into a growth phase and decreasing the oocyte pool [47]. Doxorubi-
cin triggers the DNA-damaging TAp63α-Cleaved-CASP3 pathway to 
induce apoptosis in the oocytes of primordial follicles [48]. Radiation 
therapy is also toxic to oocytes. It increases ROS production in pa-
tients, which induces DNA damage either directly or via lipid peroxi-
dation or by increasing the expression of a pro-apoptotic protein, 
p53 upregulated modulator of apoptosis, in oocytes or granulosa 
cells [52]. Cryopreservation of oocytes or ovarian tissues has been 
used to persevere oocytes for later use before chemotherapy [50]. 
Further, antioxidants such as melatonin are now used to quench ROS 
before radiation therapy [53]. 

5. Meiotic errors 
Meiotic errors can be caused by environmental toxicants or medi-

cal treatments. However, they can also happen by chance during 
normal oogenesis. Typical meiotic mistakes include failure to repair 
DNA breaks and defective synapsis [26], abnormal spindle assembly 
[54], and further chromosome nondisjunction [55]. Surprisingly, 
20%–25% of human oocytes obtained in IVF clinics showed aneu-
ploidy [56], and the ratio increases as women become older [57]. To 
control the quality of the overall oocyte pool, certain meiotic check-
point mechanisms sacrifice abnormal oocytes and decrease the total 
oocyte number [54,57]. However, these checkpoints are less strin-
gent in females than in males [57]. Thus, some oocytes with meiotic 
errors can still be fertilized, leading to chromosome-related diseases/
syndromes such as Down syndrome in newborns [58,59]. Nonethe-
less, oocytes can find a way to efficiently repair DNA double-strand 
breaks and protect the genetic integrity of offspring if apoptosis is 
inhibited [60,61]. 

Ovulatory inflammation: a contributing factor 
to the decline of the oocyte pool? 

Ovulation is the process of releasing oocyte(s) from the ovary. It is 
triggered by a preovulatory surge of luteinizing hormone (LH) and 
recurs every reproductive cycle [62]. In the entire reproductive life 
span, a woman releases only 300–400 oocytes [63], a negligible sub-
set of oocytes compared to the number of oocytes a female is born 
with. In the previous section, a few well-established causes of oocyte 
losses were reviewed. In this section, we will discuss another cause 
that may trigger oocyte loss: the acute inflammation that the ovary 
experiences at the time of ovulation. When a tissue undergoes acute 
inflammation, leukocytes quickly infiltrate the tissue and display a 
series of defensive behaviors with the aim of destroying foreign in-

vaders, such as infectious microorganisms or harmful substances. 
However, these defensive actions inevitably damage the tissue itself. 
Overwhelming evidence indicates that the ovary experiences acute 
inflammation when it undergoes a cascade of ovulatory processes, 
suggesting that a similar tissue-damaging event may happen in the 
ovary at the time of ovulation. Therefore, the ovarian cells, including 
primordial germ cells, may be damaged and eventually removed 
from the ovary at each ovulation, accounting for a significant portion 
of oocyte loss during the reproductive lifespan. Herein, we will dis-
cuss this possibility. 

1. Ovulation is accompanied by acute inflammation 
The idea that ovulation is an inflammatory process was originally 

introduced in the early 1980s by Espey [64], who presented a strik-
ing similarity between a general inflammatory process and the 
events that take place at the time of ovulation. Since then, this idea 
has gained popularity through extensive observational and experi-
mental data that were recently reviewed by Duffy et al. [65]. The 
most obvious evidence that the ovary undergoes acute inflamma-
tion is that the number and density of proinflammatory leukocytes 
increase in the ovary immediately after the LH surge [66-69], like 
any other tissue that undergoes acute inflammation. The LH 
surge-induced leukocyte infiltration is mediated by pro-inflamma-
tory cytokines and ROS that are either released by ovarian cells or 
resident leukocytes [64,70-74]. For example, one of the pro-inflam-
matory cytokines, interleukin 1 beta (IL-1β), is expressed and secret-
ed from theca cells, granulosa cells, and leukocytes [75,76]. IL-1β 
subsequently induces the expression of prostaglandin synthase 2 
(PTGS2) in granulosa cells [76]. PTGS2 is a rate-limiting enzyme in 
the synthetic pathway of prostaglandin E2 (PGE2) [77,78], a pro-in-
flammatory agent that impacts angiogenesis, blood flow, immune 
cell function, and tissue remodeling in the ovary [65]. Importantly, 
locally produced PGE2 stimulates the recruitment of a variety of 
proinflammatory cells to the ovary in a short time [79], as it does in 
other inflammatory sites [80], creating acute inflammation in the 
ovary. 

2. Ovulatory inflammation and tissue damage 
Acute inflammation causes oxidative stress and DNA damage in 

the resident cells, and this occurs in the ovary when it undergoes 
ovulatory processes [81-84]. As the ovary repeats ovulation, the ovar-
ian tissue, including oocytes, may also be damaged by proinflamma-
tory cells via engulfment and the proteases that the immune cells re-
lease [85]. Importantly, inflammatory cells and their secretions are 
primarily localized and execute their inflammatory actions around 
the blood vessels in the ovulatory follicles and medullary region. 
However, primordial follicles are sequestered in the cortex, the least 
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vascularized region in the ovary. Therefore, presumably, the primor-
dial follicles localized close to medulla, but not those far away from 
the inflammatory sites and in the cortex, may be damaged and lost 
at the time of ovulation (Figure 3). 

In support of the suggested role of inflammatory cells in decreas-
ing the oocyte pool, recent studies have pointed out that a patho-
logical level of ovarian inflammation induces POI, which is caused by 
an accelerated decline of the oocyte pool [86-89]. For instance, wom-

en with chronic systemic inflammation caused by an autoimmune 
disease (e.g., Addison disease) or by pathologically elevated produc-
tion of inflammatory cytokines have a significantly higher likelihood 
of developing POI [87,90-93]. 

In addition to its direct impact on oocytes or follicles, inflammation 
may indirectly accelerate the decline of the oocyte pool by inducing 
fibrosis (deposition of connective tissue), which is generally observed 
in aged ovaries [94,95]. Indeed, fibrosis is  a part of the natural aging 

Figure 3. Ovulatory inflammation and the oocyte pool. The luteinizing hormone (LH) surge stimulates theca and mural granulosa cells 
(GCs) to produce prostaglandin E2 (PGE2) and interleukin 1 beta (IL-1β), which then trigger them and resident immune cells to produce 
inflammatory cytokines. These cytokines increase pro-inflammatory immune cells in the ovary by facilitating their infiltration into the ovarian 
tissue from the circulating bloodstream, causing localized inflammatory situation in the ovary. As a result, germ cells and follicles may get 
damaged directly by the proinflammatory cells or indirectly via reactive oxygen species (ROS) produced by the immune cells or ovarian 
cells. The repeated ovulatory inflammation itself and physical tearing of the ovarian surface epithelium (OSE) result in both the loss of germ 
cells and neoplastic transformation. NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; GR, glucocorticoid receptor; PGR, 
progesterone recepto; NFKBIA, NF-κB inhibitor alpha.
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process in the ovary and likely contributes to the decline of the oo-
cyte pool, as fibrous tissues may interfere with normal ovarian dy-
namics, as well as impair follicular survival, recruitment, and growth 
(Figure 3). 

3. Polycystic ovarian syndrome, contraception, and the oocyte 
pool 

If it is true that ovulatory inflammation accounts for the loss of a 
significant portion of oocytes, and therefore is a contributing fac-
tor to the decline of oocyte pool, one can predict that the oocyte 
pool decreases more slowly and therefore the reproductive lifes-
pan would be longer in women whose ovulation frequency or 
number is less than that of average women. Women with polycys-
tic ovarian syndrome (PCOS) do not ovulate at all or have a much 
lower ovulation frequency than those without the syndrome. As a 
result, women with PCOS experience a significantly lower level of 
ovulatory inflammation. Indeed, women with PCOS have a larger 
ovarian pool and exhibit a slower rate of follicular atresia than in-
fertile eumenorrheic women [96-98]. Another example of less 
ovulation can be seen in women who take contraceptive pills. Un-
fortunately, there is no direct evidence that taking contraceptive 
pills may delay the oocyte-pool decline. However, it is well estab-
lished that women who take contraceptive pills have a lower prob-
ability of developing ovarian cancer than those who do not [99-
101], likely because the ovarian tissues have less exposure to ovu-
latory inflammation. 

In summary, the literature clearly shows that the causes of the 
continuous decline of the oocyte pool throughout the entire repro-
ductive lifespan are multifactorial. Some factors are intrinsic to the 
ovary (oocyte attrition, meiotic errors, follicular atresia) and un-
avoidable, while others are external and preventable (environmen-
tal toxicants, drugs). In addition, here, we discuss an additional po-
tential intrinsic factor: ovulatory inflammation. The question re-
mains of why females are born with excess oocytes. Might it be to 
ensure that they maintain fertility for a sufficient period when the 
ovary continues to lose oocytes due to the aforementioned rea-
sons? Males are born without sperm in their gonads. Instead, their 
gonads contain germ cell stem cells, from which sperms are contin-
uously produced for a few decades in humans, with the stem cells 
serving a reservoir for continued production of the male germ cells. 
The female gonads, however, do not contain germ cell stem cells; 
instead, ovarian egg production has to rely on the finite number of 
oocytes with which they are born. Therefore, having an excess 
number of oocytes at the time of birth may be a mechanism to en-
sure egg production for an extended period and long-term fertility 
in humans. 
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