Acknowledgement
This study was supported by grant No. 02-2021-0015 from the Seoul National University Bundang Hospital Research Fund.
References
- Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain 1999;122(Pt 8):1421-1436 https://doi.org/10.1093/brain/122.8.1421
- Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 1999;122(Pt 8):1437-1448 https://doi.org/10.1093/brain/122.8.1437
- Rispoli V, Schreglmann SR, Bhatia KP. Neuroimaging advances in Parkinson's disease. Curr Opin Neurol 2018;31:415-424 https://doi.org/10.1097/WCO.0000000000000584
- Schwarz ST, Xing Y, Tomar P, Bajaj N, Auer DP. In vivo assessment of brainstem depigmentation in Parkinson disease: potential as a severity marker for multicenter studies. Radiology 2017;283:789-798 https://doi.org/10.1148/radiol.2016160662
- Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, et al. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-462 https://doi.org/10.1148/radiol.10100495
- Guan X, Xu X, Zhang M. Region-specific iron measured by MRI as a biomarker for Parkinson's disease. Neurosci Bull 2017;33:561-567 https://doi.org/10.1007/s12264-017-0138-x
- Foo H, Mak E, Yong TT, Wen MC, Chander RJ, Au WL, et al. Progression of small vessel disease correlates with cortical thinning in Parkinson's disease. Parkinsonism Relat Disord 2016;31:34-40 https://doi.org/10.1016/j.parkreldis.2016.06.019
- Sang T, He J, Wang J, Zhang C, Zhou W, Zeng Q, et al. Alterations in white matter fiber in Parkinson disease across different cognitive stages. Neurosci Lett 2022;769:136424
- Blazejewska AI, Schwarz ST, Pitiot A, Stephenson MC, Lowe J, Bajaj N, et al. Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI. Neurology 2013;81:534-540 https://doi.org/10.1212/WNL.0b013e31829e6fd2
- Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP. The 'swallow tail' appearance of the healthy nigrosome-a new accurate test of Parkinson's disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS One 2014;9:e93814
- Cosottini M, Frosini D, Pesaresi I, Donatelli G, Cecchi P, Costagli M, et al. Comparison of 3T and 7T susceptibility-weighted angiography of the substantia nigra in diagnosing Parkinson disease. AJNR Am J Neuroradiol 2015;36:461-466 https://doi.org/10.3174/ajnr.A4158
- Noh Y, Sung YH, Lee J, Kim EY. Nigrosome 1 detection at 3T MRI for the diagnosis of early-stage idiopathic Parkinson disease: assessment of diagnostic accuracy and agreement on imaging asymmetry and clinical laterality. AJNR Am J Neuroradiol 2015;36:2010-2016 https://doi.org/10.3174/ajnr.A4412
- Reiter E, Mueller C, Pinter B, Krismer F, Scherfler C, Esterhammer R, et al. Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism. Mov Disord 2015;30:1068-1076 https://doi.org/10.1002/mds.26171
- Bae YJ, Kim JM, Kim E, Lee KM, Kang SY, Park HS, et al. Loss of nigral hyperintensity on 3 tesla MRI of parkinsonism: comparison with (123) I-FP-CIT SPECT. Mov Disord 2016;31:684-692 https://doi.org/10.1002/mds.26584
- Gao P, Zhou PY, Wang PQ, Zhang GB, Liu JZ, Xu F, et al. Universality analysis of the existence of substantia nigra "swallow tail" appearance of non-Parkinson patients in 3T SWI. Eur Rev Med Pharmacol Sci 2016;20:1307-1314
- Kim JM, Jeong HJ, Bae YJ, Park SY, Kim E, Kang SY, et al. Loss of substantia nigra hyperintensity on 7 Tesla MRI of Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Parkinsonism Relat Disord 2016;26:47-54 https://doi.org/10.1016/j.parkreldis.2016.01.023
- Acosta-Cabronero J, Cardenas-Blanco A, Betts MJ, Butryn M, Valdes-Herrera JP, Galazky I, et al. The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease. Brain 2017;140:118-131 https://doi.org/10.1093/brain/aww278
- Langley J, Huddleston DE, Sedlacik J, Boelmans K, Hu XP. Parkinson's disease-related increase of T2*-weighted hypointensity in substantia nigra pars compacta. Mov Disord 2017;32:441-449 https://doi.org/10.1002/mds.26883
- Sung YH, Lee J, Nam Y, Shin HG, Noh Y, Shin DH, et al. Differential involvement of nigral subregions in idiopathic Parkinson's disease. Hum Brain Mapp 2018;39:542-553 https://doi.org/10.1002/hbm.23863
- Cho SJ, Bae YJ, Kim JM, Kim HJ, Baik SH, Sunwoo L, et al. Iron-sensitive magnetic resonance imaging in Parkinson's disease: a systematic review and meta-analysis. J Neurol 2021;268:4721-4736 https://doi.org/10.1007/s00415-021-10582-x
- Tatsch K, Poepperl G. Nigrostriatal dopamine terminal imaging with dopamine transporter SPECT: an update. J Nucl Med 2013;54:1331-1338 https://doi.org/10.2967/jnumed.112.105379
- Sung YH, Noh Y, Lee J, Kim EY. Drug-induced Parkinsonism versus idiopathic Parkinson disease: utility of nigrosome 1 with 3-T imaging. Radiology 2016;279:849-858 https://doi.org/10.1148/radiol.2015151466
- Oustwani CS, Korutz AW, Lester MS, Kianirad Y, Simuni T, Hijaz TA. Can loss of the swallow tail sign help distinguish between Parkinson disease and the Parkinson-plus syndromes? Clin Imaging 2017;44:66-69 https://doi.org/10.1016/j.clinimag.2017.04.005
- Perez Akly MS, Stefani CV, Ciancaglini L, Bestoso JS, Funes JA, Bauso DJ, et al. Accuracy of nigrosome-1 detection to discriminate patients with Parkinson's disease and essential tremor. Neuroradiol J 2019;32:395-400 https://doi.org/10.1177/1971400919853787
- De Marzi R, Seppi K, Hogl B, Muller C, Scherfler C, Stefani A, et al. Loss of dorsolateral nigral hyperintensity on 3.0 tesla susceptibility-weighted imaging in idiopathic rapid eye movement sleep behavior disorder. Ann Neurol 2016;79:1026-1030 https://doi.org/10.1002/ana.24646
- Bae YJ, Kim JM, Kim KJ, Kim E, Park HS, Kang SY, et al. Loss of substantia nigra hyperintensity at 3.0-T MR imaging in idiopathic REM sleep behavior disorder: comparison with 123I-FP-CIT SPECT. Radiology 2018;287:285-293 https://doi.org/10.1148/radiol.2017162486
- van der Pluijm M, Cassidy C, Zandstra M, Wallert E, de Bruin K, Booij J, et al. Reliability and reproducibility of neuromelanin-sensitive imaging of the substantia nigra: a comparison of three different sequences. J Magn Reson Imaging 2021;53:712-721 https://doi.org/10.1002/jmri.27384
- Kashihara K, Shinya T, Higaki F. Neuromelanin magnetic resonance imaging of nigral volume loss in patients with Parkinson's disease. J Clin Neurosci 2011;18:1093-1096 https://doi.org/10.1016/j.jocn.2010.08.043
- Wang J, Li Y, Huang Z, Wan W, Zhang Y, Wang C, et al. Neuromelanin-sensitive magnetic resonance imaging features of the substantia nigra and locus coeruleus in de novo Parkinson's disease and its phenotypes. Eur J Neurol 2018;25:949-e73
- Cho SJ, Bae YJ, Kim JM, Kim D, Baik SH, Sunwoo L, et al. Diagnostic performance of neuromelanin-sensitive magnetic resonance imaging for patients with Parkinson's disease and factor analysis for its heterogeneity: a systematic review and meta-analysis. Eur Radiol 2021;31:1268-1280 https://doi.org/10.1007/s00330-020-07240-7
- Schwarz ST, Rittman T, Gontu V, Morgan PS, Bajaj N, Auer DP. T1-weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson's disease. Mov Disord 2011;26:1633-1638 https://doi.org/10.1002/mds.23722
- Fabbri M, Reimao S, Carvalho M, Nunes RG, Abreu D, Guedes LC, et al. Substantia nigra neuromelanin as an imaging biomarker of disease progression in Parkinson's disease. J Parkinsons Dis 2017;7:491-501 https://doi.org/10.3233/JPD-171135
- Kuya K, Ogawa T, Shinohara Y, Ishibashi M, Fujii S, Mukuda N, et al. Evaluation of Parkinson's disease by neuromelanin-sensitive magnetic resonance imaging and 123I-FP-CIT SPECT. Acta Radiol 2018;59:593-598 https://doi.org/10.1177/0284185117722812
- Okuzumi A, Hatano T, Kamagata K, Hori M, Mori A, Oji Y, et al. Neuromelanin or DaT-SPECT: which is the better marker for discriminating advanced Parkinson's disease? Eur J Neurol 2019;26:1408-1416 https://doi.org/10.1111/ene.14009
- Kashihara K, Shinya T, Higaki F. Reduction of neuromelanin-positive nigral volume in patients with MSA, PSP and CBD. Intern Med 2011;50:1683-1687 https://doi.org/10.2169/internalmedicine.50.5101
- Matsuura K, Maeda M, Yata K, Ichiba Y, Yamaguchi T, Kanamaru K, et al. Neuromelanin magnetic resonance imaging in Parkinson's disease and multiple system atrophy. Eur Neurol 2013;70:70-77 https://doi.org/10.1159/000350291
- Wang J, Huang Z, Li Y, Ye F, Wang C, Zhang Y, et al. Neuromelanin-sensitive MRI of the substantia nigra: an imaging biomarker to differentiate essential tremor from tremor-dominant Parkinson's disease. Parkinsonism Relat Disord 2019;58:3-8 https://doi.org/10.1016/j.parkreldis.2018.07.007
- Gaurav R, Pyatigorskaya N, Biondetti E, Valabregue R, Yahia-Cherif L, Mangone G, et al. Deep learning-based neuromelanin MRI changes of isolated REM sleep behavior disorder. Mov Disord 2022;37:1064-1069 https://doi.org/10.1002/mds.28933
- de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 2010;63:194-206 https://doi.org/10.1002/mrm.22187
- Pyatigorskaya N, Sanz-Morere CB, Gaurav R, Biondetti E, Valabregue R, Santin M, et al. Iron imaging as a diagnostic tool for Parkinson's disease: a systematic review and meta-analysis. Front Neurol 2020;11:366
- Ulla M, Bonny JM, Ouchchane L, Rieu I, Claise B, Durif F. Is R2* a new MRI biomarker for the progression of Parkinson's disease? A longitudinal follow-up. PLoS One 2013;8:e57904
- Wieler M, Gee M, Camicioli R, Martin WR. Freezing of gait in early Parkinson's disease: nigral iron content estimated from magnetic resonance imaging. J Neurol Sci 2016;361:87-91 https://doi.org/10.1016/j.jns.2015.12.008
- Du G, Liu T, Lewis MM, Kong L, Wang Y, Connor J, et al. Quantitative susceptibility mapping of the midbrain in Parkinson's disease. Mov Disord 2016;31:317-324 https://doi.org/10.1002/mds.26417
- He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, et al. Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping. Hum Brain Mapp 2015;36: 4407-4420 https://doi.org/10.1002/hbm.22928
- Langkammer C, Pirpamer L, Seiler S, Deistung A, Schweser F, Franthal S, et al. Quantitative susceptibility mapping in Parkinson's disease. PLoS One 2016;11:e0162460
- Uchida Y, Kan H, Sakurai K, Inui S, Kobayashi S, Akagawa Y, et al. Magnetic susceptibility associates with dopaminergic deficits and cognition in Parkinson's disease. Mov Disord 2020;35:1396-1405 https://doi.org/10.1002/mds.28077
- Lee JH, Lee MS. Brain iron accumulation in atypical Parkinsonian syndromes: in vivo MRI evidences for distinctive patterns. Front Neurol 2019;10:74
- Azuma M, Hirai T, Nakaura T, Kitajima M, Yamashita S, Hashimoto M, et al. Combining quantitative susceptibility mapping to the morphometric index in differentiating between progressive supranuclear palsy and Parkinson's disease. J Neurol Sci 2019;406:116443
- Mazzucchi S, Frosini D, Costagli M, Del Prete E, Donatelli G, Cecchi P, et al. Quantitative susceptibility mapping in atypical Parkinsonisms. Neuroimage Clin 2019;24:101999
- Novellino F, Cherubini A, Chiriaco C, Morelli M, Salsone M, Arabia G, et al. Brain iron deposition in essential tremor: a quantitative 3-Tesla magnetic resonance imaging study. Mov Disord 2013;28:196-200 https://doi.org/10.1002/mds.25263
- Sun J, Lai Z, Ma J, Gao L, Chen M, Chen J, et al. Quantitative evaluation of iron content in idiopathic rapid eye movement sleep behavior disorder. Mov Disord 2020;35:478-485 https://doi.org/10.1002/mds.27929
- Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996;111:209-219 https://doi.org/10.1006/jmrb.1996.0086
- Prodoehl J, Li H, Planetta PJ, Goetz CG, Shannon KM, Tangonan R, et al. Diffusion tensor imaging of Parkinson's disease, atypical parkinsonism, and essential tremor. Mov Disord 2013;28:1816-1822 https://doi.org/10.1002/mds.25491
- Atkinson-Clement C, Pinto S, Eusebio A, Coulon O. Diffusion tensor imaging in Parkinson's disease: review and meta-analysis. Neuroimage Clin 2017;16:98-110 https://doi.org/10.1016/j.nicl.2017.07.011
- Vaillancourt DE, Spraker MB, Prodoehl J, Abraham I, Corcos DM, Zhou XJ, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 2009;72:1378-1384 https://doi.org/10.1212/01.wnl.0000340982.01727.6e
- Ofori E, Pasternak O, Planetta PJ, Li H, Burciu RG, Snyder AF, et al. Longitudinal changes in free-water within the substantia nigra of Parkinson's disease. Brain 2015;138(Pt 8):2322-2331 https://doi.org/10.1093/brain/awv136
- Chen F, Wu T, Luo Y, Li Z, Guan Q, Meng X, et al. Amnestic mild cognitive impairment in Parkinson's disease: white matter structural changes and mechanisms. PLoS One 2019;14:e0226175
- Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med 2009;62:717-730 https://doi.org/10.1002/mrm.22055
- Hoy AR, Koay CG, Kecskemeti SR, Alexander AL. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. Neuroimage 2014;103:323-333 https://doi.org/10.1016/j.neuroimage.2014.09.053
- Guttuso T Jr, Bergsland N, Hagemeier J, Lichter DG, Pasternak O, Zivadinov R. Substantia nigra free water increases longitudinally in Parkinson disease. AJNR Am J Neuroradiol 2018;39:479-484 https://doi.org/10.3174/ajnr.A5545
- Ofori E, Krismer F, Burciu RG, Pasternak O, McCracken JL, Lewis MM, et al. Free water improves detection of changes in the substantia nigra in parkinsonism: a multisite study. Mov Disord 2017;32:1457-1464 https://doi.org/10.1002/mds.27100
- Burciu RG, Ofori E, Archer DB, Wu SS, Pasternak O, McFarland NR, et al. Progression marker of Parkinson's disease: a 4-year multi-site imaging study. Brain 2017;140:2183-2192 https://doi.org/10.1093/brain/awx146
- Yang J, Archer DB, Burciu RG, Muller MLTM, Roy A, Ofori E, et al. Multimodal dopaminergic and free-water imaging in Parkinson's disease. Parkinsonism Relat Disord 2019;62:10-15 https://doi.org/10.1016/j.parkreldis.2019.01.007
- Zhang Y, Wu IW, Buckley S, Coffey CS, Foster E, Mendick S, et al. Diffusion tensor imaging of the nigrostriatal fibers in Parkinson's disease. Mov Disord 2015;30:1229-1236 https://doi.org/10.1002/mds.26251
- Planetta PJ, Ofori E, Pasternak O, Burciu RG, Shukla P, DeSimone JC, et al. Free-water imaging in Parkinson's disease and atypical parkinsonism. Brain 2016;139(Pt 2):495-508 https://doi.org/10.1093/brain/awv361
- Mitchell T, Archer DB, Chu WT, Coombes SA, Lai S, Wilkes BJ, et al. Neurite orientation dispersion and density imaging (NODDI) and free-water imaging in Parkinsonism. Hum Brain Mapp 2019;40:5094-5107 https://doi.org/10.1002/hbm.24760
- Pyatigorskaya N, Gaurav R, Arnaldi D, Leu-Semenescu S, Yahia-Cherif L, Valabregue R, et al. Magnetic resonance imaging biomarkers to assess substantia nigra damage in idiopathic rapid eye movement sleep behavior disorder. Sleep 2017;40:zsx149
- Zhou L, Li G, Zhang Y, Zhang M, Chen Z, Zhang L, et al. Increased free water in the substantia nigra in idiopathic REM sleep behaviour disorder. Brain 2021;144:1488-1497 https://doi.org/10.1093/brain/awab039