DOI QR코드

DOI QR Code

Second law thermodynamic analysis of nanofluid turbulent flow in heat exchanger

  • K. Manjunath (Department of Mechanical Engineering, Delhi Technological University)
  • 투고 : 2022.07.15
  • 심사 : 2022.09.07
  • 발행 : 2022.09.25

초록

Entropy generation along with exergetic analysis is carried out using turbulent nanofluid flow in the heat exchanger. To obtain the optimized percentage constituent of nanofluid, the nanofluid volume concentrations is varied for the given input conditions. For different Reynolds number of the fluid and heat capacity rate ratio between the streams, the heat transfer improvements are studied in terms of nano particles diameter. Parametric analysis is carried out for a counterflow heat exchanger using turbulent nanofluid flow with exergetic efficiency along with entropy generation number as performance parameters. The exergetic efficiency provides realistic approach in the design of nanofluid applications in heat exchanger leading to conservation of energy.

키워드

참고문헌

  1. Apmann, K., Fulmer. R., Scherer, B., Good, S., Wohld, J. and Vafaei, S. (2022), "Nanofluid heat transfer: enhancement of the heat transfer coefficient inside microchannels", Nanomater., 12(4), 615. https://doi.org/10.3390/nano12040615.
  2. Bahiraei, M. and Majd, S.M. (2016), "Prediction of entropy generation for nanofluid flow through a triangular minichannel using neural network", Adv. Powder Technol., 27(2), 673-683. https://doi.org/10.1016/j.apt.2016.02.024.
  3. Bahiraei, M. and Monavari, A. (2022), "Irreversibility characteristics of a mini shell and tube heat exchanger operating with a nanofluid considering effects of fins and nanoparticle shape", Powder Technol., 7, 117117. https://doi.org/10.1016/j.powtec.2022.117117.
  4. Bahiraei, M., Naseri, M. and Monavari, A.A. (2021), "Second law analysis on flow of a nanofluid in a shell-and-tube heat exchanger equipped with new unilateral ladder type helical baffles", Powder Technol., 394, 234-249. https://doi.org/10.1016/j.powtec.2021.08.040.
  5. Bejan, A. (1996), Entropy Generation Minimization CRS Press. Boca Raton.
  6. Bhattad, A., Sarkar, J. and Ghosh, P. (2019), "Energetic and exergetic performances of plate heat exchanger using brine-based hybrid nanofluid for milk chilling application", Heat Transfer Eng., 41(6-7), https://doi.org/10.1080/01457632.2018.1546770.
  7. Bhattad, A., Sarkar, J. and Ghosh, P. (2020), "Heat-transfer characteristics of plate heat exchanger using hybrid nanofluids: effect of nanoparticle mixture-ratio", Heat Mass Transfer., 56, 2457-2472. https://doi.org/10.1007/s00231-020-02877-y.
  8. Bianco, V., Manca, O. and Nardini, S. (2014), "Entropy generation analysis of turbulent convection flow of Al2O3-water nanofluid in a circular tube subjected to constant wall heat flux", Energ. Convers. Manage., 77, 306-314. https://doi.org/10.1016/j.enconman.2013.09.049.
  9. Garud, K.S., Hwang, S.G., Lim, T.K., Kim, N. and Lee, M.Y. (2021), "First and second law thermodynamic analyses of hybrid nanofluid with different particle shapes in a microplate heat exchanger", Symmetry, 13(8), 1466. https://doi.org/10.3390/sym13081466.
  10. Irshad, K., Islam, N., Zahir, M.H., Pasha, A.A. and Abdel Gawad, A.F. (2022), "Thermal performance investigation of Therminol55/MWCNT+ CuO nanofluid flow in a heat exchanger from an exergy and entropy approach", Case Studies in Thermal Eng., 34,102010. https://doi.org/10.1016/j.csite.2022.102010.
  11. Khaleduzzaman, S.S., Sohel, M.R., Mahbubul, I.M., Saidur, R. and Selvaraj, J. (2016), "Exergy and entropy generation analysis of TiO2-water nanofluid flow through the water block as an electronics device", Int. J. Heat Mass Transfer., 101, 104-111. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.026.
  12. Klein, S.A. (2008), Engineering-Equation-Solver, version 8.158., F-Chart Software, Middleton, WI.
  13. Kotas, T.J. (2013), The exergy-method of thermal plant analysis.
  14. Manjunath, K. (2021), "Hybrid nanofluid laminar flow analysis in double pipe heat exchanger (February 28, 2021)", Proceedings of the International Conference on Systems, Energy & Environment (ICSEE) 2021.
  15. Manjunath, K. (2022), "Optimization of nanofluid parameters for double pipe heat exchanger", Recent Adv. Manufact. Automat. Des. Energ. Technol., 803-814.
  16. Manjunath, K. and Kaushik, S.C. (2014), "The second law analysis of an unbalanced constructal heat exchanger", Int. J. Green Energ., 11(2), 173-192. https://doi.org/10.1080/15435075.2013.772515.
  17. Manjunath, K. and Kaushik, S.C. (2015), "Second law efficiency analysis of heat exchangers", Heat Transfer. Asian Res., 44(2), 89-108. https://doi.org/10.1002/htj.21109.
  18. Manjunath, K., Kaushik, S.C. (2014), "Second law thermodynamic study of heat exchangers: A review", Renew. Sust. Energ. Rev., 40, 348-374. https://doi.org/10.1016/j.rser.2014.07.186.
  19. Moghaddami, M., Mohammadzade, A. and Esfehani, S.A. (2011), "Second law analysis of nanofluid flow", Energ. Convers. Manage., 52(2),1397-405. https://doi.org/10.1016/j.enconman.2010.10.002.
  20. Nakhchi, M.E. and Rahmati, M.T. (2021), "Entropy generation of turbulent Cu-water nanofluid flows inside thermal systems equipped with transverse-cut twisted turbulators", J. Therm. Anal. Calorimetry, 143(3), 2475-2484. https://doi.org/10.1007/s10973-020-09960-w.
  21. Nogueira, E. (2022), "Influence of Nanoparticle Shapes of Boehmite Alumina on the Thermal Performance of a Straight Microchannel Printed Circuit Heat Exchanger", J. Metal. Mater. Res., 5(1).
  22. Sahoo, R.R. (2021), "Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid", J. Therm. Anal. Calorimetry, 146(2), 827-839. https://doi.org/10.1007/s10973-020-10039-9.
  23. Shafee, A., Sheikholeslami, M., Jafaryar, M. and Babazadeh, H. (2021), "Irreversibility of hybrid nanoparticles within a pipe fitted with turbulator", J. Therm. Anal. Calorimetry, 143(1), 715-723. https://doi.org/10.1007/s10973-019-09248-8.
  24. Singh, P.K., Anoop, K.B., Sundararajan, T. and Das, S.K. (2010), "Entropy generation due to flow and heat transfer in nanofluids", Int. J. Heat Mass Transfer., 53(21-22), 4757-4767. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.016
  25. Wang, H., Pang, M., Diao, Y. and Zhao, Y. (2022), "Heat transfer characteristics and flow features of nanofluids in parallel flat minichannels", Powder Technol., 402, 117321. https://doi.org/10.1016/j.powtec.2022.117321.
  26. Yang, L., Baghaei, S., Suksatan, W., Barnoon, P., Davidyants, A. and El-Shafay, A.S. (2022), "Numerical assessment of the influence of helical baffle on the hydrothermal aspects of nanofluid turbulent forced convection inside a heat exchanger", Scientific Reports, 12(1), 1-5. https://doi.org/10.1038/s41598-022-06049-2.