DOI QR코드

DOI QR Code

Optimized biodiesel yield in a hydrodynamic cavitation reactor using response surface methodology

  • Neeraj Budhraja (Department of Mechanical Engineering, Delhi Technological University) ;
  • R.S. Mishra (Department of Mechanical Engineering, Delhi Technological University)
  • 투고 : 2021.07.25
  • 심사 : 2022.09.02
  • 발행 : 2022.12.25

초록

Biodiesel is a non-polluting and non-toxic energy source that can replace conventional diesel. However, the higher production cost and raw material scarcity became challenges that obstruct the commercialization of biodiesel production. In the current investigation, fried cooking oil is used for biodiesel production in a hydrodynamic cavitation reactor, thus enhancing raw material availability and helping better waste oil disposal. However, due to the cavitation effect inside the reactor, the hydrodynamic cavitation reactor can give biodiesel yield above 98%. Thus, the use of orifice plates (having a different number of holes for cavitation) in the reactor shows more than 90% biodiesel yield within 10 mins of a time interval. The effects of rising temperature at different molar ratios are also investigated. The five-hole plate achieves the highest yield for a 4.5:1 molar ratio at 65℃. And the similar result is predicted by the response surface methodology model; however, the optimized yield is obtained at 60℃. The investigation will help understand the effect of hydrodynamic cavitation on biodiesel yield at different molar ratios and elevated temperatures.

키워드

과제정보

Department of Mechanical Engineering, Delhi Technological University, Delhi, India, supported this work. No funding is received for the above work.

참고문헌

  1. Al-Hassan, M., Mujafet, H. and Al-Shannag, M. (2012), "An experimental study on the solubility of a diesel-ethanol blend and on the performance of a diesel engine fueled with diesel-biodiesel-ethanol blends", Jordan J. Mech. Ind. Eng., 6(2), 147-153.
  2. Barabas, I., Todoru, A. and Bldean, D. (2010), "Performance and emission characteristics of an CI engine fueled with diesel-biodiesel-bioethanol blends", Fuel, 89(12), 3827-3832. https://doi.org/10.1016/j.fuel.2010.07.011.
  3. Dehghani, S., Haghighi, M. and Vardast, N. (2019), "Structural/texture evolution of CaO/MCM-41 nanocatalyst by doping various amounts of cerium for active and stable catalyst: Biodiesel production from waste vegetable cooking oil", Int. J. Energ. Res., 43(8), 3779-3793. https://doi.org/10.1002/er.4539.
  4. Esther Olubunmi, B., Fatai Alade, A., Ogbeide Ebhodaghe, S. and Tokunbo Oladapo, O. (2022), "Optimization and kinetic study of biodiesel production from beef tallow using calcium oxide as a heterogeneous and recyclable catalyst", Energ. Convers. Manage., 14, 100221. https://doi.org/10.1016/j.ecmx.2022.100221.
  5. Goh, B.H.H., Chong, C.T., Ge, Y., Ong, H.C., Ng, J.H., Tian, B., Ashokkumar, V., Lim, S., Seljak, T. and Jozsa, V. (2020), "Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production", Energ. Convers. Manage., 223, https://doi.org/10.1016/j.enconman.2020.113296.
  6. Halwe, A.D., Deshmukh, S.J., Kanu, N.J., Gupta, E. and Tale, R.B. (2021), "Optimization of the novel hydrodynamic cavitation based waste cooking oil biodiesel production process parameters using integrated L9Taguchi and RSM approach", Materials Today: Proceedings, 47, 5934-5941. https://doi.org/10.1016/j.matpr.2021.04.484
  7. Intarapong, P., Papong, S. and Malakul, P. (2016), "Comparative life cycle assessment of diesel production from crude palm oil and waste cooking oil via pyrolysis", Int. J. Energ. Res., 40(5), 702-713. https://doi.org/10.1002/er.3433.
  8. Jayakumar, M., Karmegam, N., Gundupalli, M.P., Bizuneh Gebeyehu, K., Tessema Asfaw, B., Chang, S.W., Ravindran, B. and Kumar Awasthi, M. (2021), "Heterogeneous base catalysts: Synthesis and application for biodiesel production - A review", Bioresource Technol., 331, 125054. https://doi.org/10.1016/j.biortech.2021.125054.
  9. Kachhwaha, S.S., Maji, S. and Babu, M.K.G. (2010), "Thumba (Citrullus colocyntis) seed oil : A sustainable source of renewable energy for biodiesel production", J. Sci. Ind. Res., 69(5), 384-389.
  10. Kumar, R., Tiwari, P. and Garg, S. (2013), "Alkali transesterification of linseed oil for biodiesel production", Fuel, 104, 553-560. https://doi.org/10.1016/j.fuel.2012.05.002.
  11. Labeckas, G. and Slavinskas, S. (2013), "Performance and emission characteristics of a direct injection diesel engine operating on KDV synthetic diesel fuel", Energ. Convers. Manage., 66, 173-188. https://doi.org/10.1016/j.enconman.2012.10.004.
  12. Lapuerta, M., Armas, O. and Garcia-Contreras, R. (2009), "Effect of ethanol on blending stability and Diesel engine emissions", Energ. Fuel., 23(9), 4343-4354. https://doi.org/10.1021/ef900448m.
  13. Lee, J.S. and Saka, S. (2010), "Biodiesel production by heterogeneous catalysts and supercritical technologies", Bioresource Technol., 101(19), 7191-7200. https://doi.org/10.1016/j.biortech.2010.04.071.
  14. Li, D.G., Zhen, H., Xingcai, L., Wu-Gao, Z. and Jian-Guang, Y. (2005), "Physico-chemical properties of ethanol-diesel blend fuel and its effect on performance and emissions of diesel engines", Renew. Energ., 30(6), 967-976. https://doi.org/10.1016/j.renene.2004.07.010.
  15. Ma, F. and Hanna, M.A. (1999), "Biodiesel production: a review", Bioresource Technol., 70(1), 1-15. https://doi.org/10.1016/S0960-8524(99)00025-5.
  16. Miron, L., Chiriac, R., Brabec, M. and Badescu, V. (2021), "Ignition delay and its influence on the performance of a Diesel engine operating with different Diesel-biodiesel fuels", Energy Reports, 7, 5483-5494. https://doi.org/10.1016/j.egyr.2021.08.123.
  17. Mohite, S., Kumar, S., Maji, S. and Pal, A. (2016), "Production of biodiesel from a mixture of Karanja and linseed oils: Optimization of process parameters", Iranica J. Energ. Environ., 7(1), 12-17. https://doi.org/10.5829/idosi.ijee.2016.07.01.03.
  18. Mourad, M., Mahmoud, K.R.M. and NourEldeen, E.S.H. (2021), "Improving diesel engine performance and emissions characteristics fuelled with biodiesel", Fuel, 302, 121097. https://doi.org/10.1016/j.fuel.2021.121097.
  19. Ong, H.C., Tiong, Y.W., Goh, B.H.H., Gan, Y.Y., Mofijur, M., Fattah, I.M.R., Chong, C.T., Alam, M.A., Lee, H.V., Silitonga, A.S. and Mahlia, T.M.I. (2021), "Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges", Energ. Convers. Manage., 228, 113647. https://doi.org/10.1016/j.enconman.2020.113647.
  20. Palani, Y., Devarajan, C., Manickam, D. and Thanikodi, S. (2020), "Performance and emission characteristics of biodiesel-blend in diesel engine: A review", Environ. Eng. Res., 27(1), 200338-0. https://doi.org/10.4491/eer.2020.338.
  21. Park, S.H., Suh, H.K. and Lee, C.S. (2008), "Effect of cavitating flow on the flow and fuel atomization characteristics of biodiesel and diesel fuels", Energ. Fuel., 22(1), 605-613. https://doi.org/10.1021/ef7003305.
  22. Shi, X., Pang, X., Mu, Y., He, H., Shuai, S., Wang, J., Chen, H. and Li, R. (2006), "Emission reduction potential of using ethanol-biodiesel-diesel fuel blend on a heavy-duty diesel engine", Atmos. Environ., 40(14), 2567-2574. https://doi.org/10.1016/j.atmosenv.2005.12.026.
  23. Singh, D., Sharma, D., Soni, S.L., Sharma, S., Kumar Sharma, P. and Jhalani, A. (2020), "A review on feedstocks, production processes, and yield for different generations of biodiesel", Fuel, 262, 116553. https://doi.org/10.1016/j.fuel.2019.116553.
  24. Uddin, M.R., Ferdous, K., Uddin, M.R.R. Khan, M. and Islam, M.A. (2013), "Synthesis of biodiesel from waste cooking oil", Chem. Eng. Sci., 1(2), 22-26. https://doi.org/10.12691/ces-1-2-2.