DOI QR코드

DOI QR Code

탈규소화를 통한 LSI-Cf/SiC 복합재료의 내산화성 향상

Enhanced Oxidation Resistance of LSI-Cf/SiC Composite by De-siliconization

  • Jung Hwan Song (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jung Hoon Kong (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Seung Yong Lee (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Young Il Son (Agency for Defense Development) ;
  • Do Kyung Kim (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2022.10.05
  • 심사 : 2022.12.05
  • 발행 : 2022.12.31

초록

Cf/SiC 복합재는 저밀도, 높은 기계적 강도, 우수한 열 안정성을 가지고 있어 로켓 추진기관, 항공 및 군사 분야 등의 고온 응용 산업에 유망한 재료이다. 그러나 용융 실리콘 함침(Liquid Silicon Infiltration, LSI) 공정을 통해 제작된 복합재는 잔존하는 Si에 의하여 물리적, 열적 특성이 저하된다. 본 논문에서는 LSI 공정을 통해 제작된 Cf/SiC 복합재의 내부 Si을 제거하기 위한 방안으로 탈규소화(de-siliconization) 공정을 도입하였다. 최대 5분 동안 옥시아세틸렌 토치 테스트를 진행하고 시편의 산화된 표면과 단면은 3D scanning, X-ray diffraction(XRD), 광학현미경(OM), 전자주사현미경(SEM)으로 분석하였다.

Cf/SiC composites have low density, high mechanical strength, and good thermal stability, making them promising materials for high-temperature applications such as rocket propulsion and military fields. However, the remaining Si deteriorates physical and thermal properties. In this paper, the de-siliconization was introduced as a method to remove the Si of the Cf/SiC composite fabricated through Liquid Silicon Infiltration(LSI) process. The stability of composite has been tested under an oxyacetylene torch flame for up to 5 minutes. The oxidized surface and cross section of specimens were characterized by 3D scanning, X-ray diffraction(XRD), Optical microscope(OM) and Scanning electron microscope(SEM).

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단 - 스페이스챌린지사업(NRF-2021M1A3B8078916) 및 방위사업청과 국방과학연구소의 국방 고기동 상층추진기술 특화연구실에서 수행된 사업(UD210022SD)의 지원을 받아 수행된 연구이며 이에 감사드립니다.

참고문헌

  1. G.W. Meetham, "High-temperature materials - a general review," Journal of Materials Science, Vol. 26, pp. 853-860, 1991.
  2. W. Tsung-Ming, W. Wen-Cheng, H. and Shu-En, "Temperature dependence of the oxidation resistance of SiC coated carbon/carbon composite," Materials Chemistry and Physics, Vol. 33, pp. 208-213, 1993.
  3. S. Beyer, F. Strobel and H. Knabe, "Development and Testing of C/SiC Components for Liquid Rocket Propulsion Applications," 35th Joint Propulsion Conference and Exhibit, Los Angeles, U.S.A., AIAA-99-2896, June 1999.
  4. Y.-C. Zhu, S. Ohtani, Y. Sato and N. Iwamoto, "The improvement in oxidation resistance of CVD-SiC coated C/C composites by silicon infiltration pretreatment," Carbon, Vol. 36, No. 7-8, pp. 929-935, 1998. https://doi.org/10.1016/S0008-6223(97)00207-8
  5. Kong, J.H., Baek, C., Yun, J.H., Lim, S.T., Kim, J.-H. and Kim, D.K., "Enhanced thermal stability of W-25Re/Ti/carbon-carbon composites via gradient diffusion-bonding," Journal of Alloys and Compounds, Vol. 924, 166549, 2022.
  6. Kim, S., Han, I.S., Seong, Y.-H. and Kim, D.K., "Mechanical properties of C-SiC composite materials fabricated by the Si-Cr alloy melt-infiltration method," Journal of Composite Materials, Vol. 49, No. 24, pp. 3057-3066, 2015. https://doi.org/10.1177/0021998314559279
  7. W. Braue, R. Pleger and R. Weiss, "The nanoscale microstructure of 2D C/C-SiC ceramic composites processed via silicon capillary impregnation," International Conference on High Temperature Ceramic Matrix Composites, Santa Barbara, U.S.A., 134935, Aug. 1995.
  8. P. Tao, K. Li and Y. Wang, "Effects of preform structure on microstructure and mechanical properties of C/SiC composites reinforced by Si3N4 nanowires," Ceramics International, Vol. 44, No. 5, pp. 5719-5725, 2018. https://doi.org/10.1016/j.ceramint.2017.12.225