Acknowledgement
Research Fund for the High Efficiency Laser Laboratory of the Agency for Defense Development of Korea (No. UD190015ID).
References
- Y. Yan, X. Chen, X. S. Liu, Y. H. Mei, and G. Q. Lu, "Die bonding of high power 808 nm laser diodes with nanosilver paste," J. Electron. Packag. 134, 041003 (2012). https://doi.org/10.1115/1.4007271
- H. Nasim and Y. Jamil, "Diode lasers: From laboratory to industry," Opt. Laser Technol. 56, 211-222 (2014). https://doi.org/10.1016/j.optlastec.2013.08.012
- Y. Qu, J. Huang, Y. Zhao, and G. Yang, "Refractive index matching cooling fluids for diode pump solid state lasers," J. Laser Appl. 29, 012018 (2017). https://doi.org/10.2351/1.4974780
- R. De Santis, T. Russo, and A. Gloria, "An analysis on the potential of diode-pumped solid-state lasers for dental materials," Mater. Sci. Eng. C 92, 862-867 (2018). https://doi.org/10.1016/j.msec.2018.07.051
- H. Tan, H. Meng, X. Ruan, W. Du, and Z. Wang, "High-power direct diode laser output by spectral beam combining," Laser Phys. 28, 035802 (2018). https://doi.org/10.1088/1555-6611/aa9d09
- X. Lin, P. Wang, H. Zhu, Z. Song, Y. Zhang, and Y. Ning, "A novel processing method based on the 3-spot diode laser source for the laser cladding of stainless-steel ball valves," Opt. Laser Technol. 141, 107142 (2021). https://doi.org/10.1016/j.optlastec.2021.107142
- M. Michalik, J. Szymanczyk, M. Stajnke, T. Ochrymiuk, and A. Cenian, "Medical applications of diode lasers: pulsed versus continuous wave (cw) regime," Micromachines 12, 710 (2021). https://doi.org/10.3390/mi12060710
- A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, "Volume Bragg gratings as ultra-narrow and multiband optical filters," Proc. SPIE 8428, 84280C (2012).
- J. Duan, X. Zhao, Y. Luo, and D. Zhang, "Improving the spatial resolution of volume Bragg grating two-dimensional monochromatic images," Appl. Opt. 57, 3159-3165 (2018). https://doi.org/10.1364/AO.57.003159
- X. T. Yang, X. Z. Ma, and Y. Liu, "Continuous wave operation of a Ho:YA1O3 laser with volume Bragg grating pumped by a Tm-doped silicon fibre laser," Lasers Eng. 24, 367-373 (2013).
- N. U. Wetter and A. M. Deana, "Influence of pump bandwidth on the efficiency of side-pumped, double-beam mode-controlled lasers: establishing a new record for Nd:YLiF4 lasers using VBG," Opt. Express 23, 9379-9387 (2015). https://doi.org/10.1364/OE.23.009379
- V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, "Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm," IEEE Photonics Technol. Lett. 28, 1328-1331 (2016). https://doi.org/10.1109/LPT.2016.2541218
- X. M. Duan, Y. Ding, B. Q. Yao, and Y. Z. Wang, "High power acousto-optical Q-switched Tm:YLF-pumped Ho:GdVO4 laser," Optik 163, 39-42 (2018). https://doi.org/10.1016/j.ijleo.2018.02.107
- B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004). https://doi.org/10.1364/OL.29.001891
- O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, "Spectral combining and coherent coupling of lasers by volume Bragg gratings," IEEE J. Sel. Top. Quantum Electron. 15, 344-353 (2009). https://doi.org/10.1109/JSTQE.2009.2012438
- B. Liu, X. Tong, C. Jiang, D. R. Brown, and L. Robertson, "Development of stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping," Appl. Opt. 54, 5420-5424 (2015). https://doi.org/10.1364/AO.54.005420
- G. Venus, V. Smirnov, O. Mokhun, W. W. Bewley, C. D. Merritt, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, J. Meyer, K. Vodopyanov, and L. Glebov, "Spectral narrowing and stabilization of interband cascade laser by volume Bragg grating," Appl. Opt. 55, 77-80 (2016). https://doi.org/10.1364/AO.55.000077
- A. Kabacinski, J. Armougom, J.-M. Melkonian, M. Raybaut, J.-B. Dherbecourt, A. Godard, R. Vasilyeu, and V. Smirnov, "Wavelength tunable, single-longitudinal-mode optical parametric oscillator with a transversally chirped volume Bragg grating," Opt. Lett. 45, 607-610 (2020). https://doi.org/10.1364/ol.379581
- K. Homma and W. Watanabe, "Fabrication of PDMS-based volume Bragg gratings by stitching of femtosecond laser filament," Jpn. J. Appl. Phys. 60, 032003 (2021). https://doi.org/10.35848/1347-4065/abe05e
- H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Sys. Tech. J. 48, 2909-2947 (1969). https://doi.org/10.1002/j.1538-7305.1969.tb01198.x
- F. Wang, D. Shen, D. Fan, and Q. Lu, "Spectral narrowing of cladding-pumped high-power Tm-doped fiber laser using a volume Bragg grating-pair," Appl. Phys. Express 3, 112701 (2010). https://doi.org/10.1143/APEX.3.112701
- J. Liu, D. Shen, H. Huang, X. Zhang, L. Wang, and D. Fan, "High-power and narrow-linewidth Er, Yb fiber laser locked by a volume Bragg grating-pair," IEEE J. Quantum Electron. 50, 88-91 (2014). https://doi.org/10.1109/JQE.2013.2295371