DOI QR코드

DOI QR Code

Structural damage detection based on changes of wavelet transform coefficients of correlation functions

  • Sadeghian, Mohsen (Marine Engineering Department, Amir kabir University of Technology) ;
  • Esfandiari, Akbar (Marine Engineering Department, Amir kabir University of Technology) ;
  • Fadavie Manochehr (Marine Engineering Department, Amir kabir University of Technology)
  • 투고 : 2022.02.19
  • 심사 : 2022.04.14
  • 발행 : 2022.06.25

초록

In this paper, an innovative finite element updating method is presented based on the variation wavelet transform coefficients of Auto/cross-correlations function (WTCF). The Quasi-linear sensitivity of the wavelet coefficients of the WTCF concerning the structural parameters is evaluated based on incomplete measured structural responses. The proposed algorithm is used to estimate the structural parameters of truss and plate models. By the solution of the sensitivity equation through the least-squares method, the finite element model of the structure is updated for estimation of the location and severity of structural damages simultaneously. Several damage scenarios have been considered for the studied structure. The parameter estimation results prove the high accuracy of the method considering measurement and mass modeling errors.

키워드

참고문헌

  1. Asgarian, B., Aghaeidoost, V. and Shokrgozar, H.R. (2016), "Damage detection of jacket type offshore platforms using rate of signal energy using wavelet packet transform", Marine Struct., 45, 1-21. https://doi.org/10.1016/j.marstruc.2015.10.003.
  2. Bayissa, W. and Haritos, N. (2007), "Structural damage identification in plates using spectral strain energy analysis", J. Sound Vib., 307(1-2), 226-249. https://doi.org/10.1016/j.jsv.2007.06.062.
  3. Chang, C.C. and Chen, L.W. (2004), "Damage detection of a rectangular plate by spatial wavelet based approach", Appl. Acoust., 65(8), 819-832. https://doi.org/10.1016/j.apacoust.2004.01.004.
  4. Dackermann, U., Li, J. and Samali, B. (2013), "Identification of member connectivity and mass changes on a two-storey framed structure using frequency response functions and artificial neural networks", J. Sound Vib., 332(16), 3636-3653. https://doi.org/10.1016/j.jsv.2013.02.018.
  5. Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), "Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review", Technical Report, USA. https://doi.org/W-7405-ENG-36.
  6. Douka, E., Loutridis, S. and Trochidis, A. (2003), "Crack identification in beams using wavelet analysis", Int. J. Solid. Struct., 40(13-14), 3557-3569. https://doi.org/10.1016/S0020-7683(03)00147-1.
  7. Ercolani, G., Felix, D. and Ortega, N. (2018), "Crack detection in prestressed concrete structures by measuring their natural frequencies", J. Civil Struct. Hlth. Monit., 8(4), 661-671. https://doi.org/10.1007/s13349-018-0295-2.
  8. Fan, W. and Qiao, P. (2009), "A 2-D continuous wavelet transform of mode shape data for damage detection of plate structures", Int. J. Solid. Struct., 46(25-26), 4379-4395. https://doi.org/10.1016/j.ijsolstr.2009.08.022.
  9. Garcia-Palencia, A., Santini-Bell, E., Gul, M. and Catbas, N. (2015), "A FRF-based algorithm for damage detection using experimentally collected data", Struct. Monit. Mainten., 2(4), 399-418. http://doi.org/10.12989/smm.2015.2.4.399.
  10. Granlund, G.H. and Knutsson, H. (2013), Signal Processing for Computer Vision, Springer Science & Business Media.
  11. Ho, Y. and Ewins, D. (2000), "Numerical evaluation of the damage index", Struct. Hlth. Monit., 1999, 995-1011.
  12. Huang, C. and Nagarajaiah, S. (2021), "Output only system identification using complex wavelet modified second order blind identification method-A time-frequency domain approach", Struct. Eng. Mech., 78(3), 369-378. http://doi.org/10.12989/sem.2021.78.3.369.
  13. Huynh, T.C., Dang, N.L. and Kim, J.T. (2017), "Advances and challenges in impedance-based structural health monitoring", Struct. Monit. Mainten., 4(4), 301-329. http://doi.org/10.12989/smm.2017.4.4.301.
  14. Kammer, D.C. and Nimityongskul, S. (2009), "Frequency band averaging of spectral densities for updating finite element models", J. Vib. Acoust., 131(4), 041007. https://doi.org/10.1115/1.3085885.
  15. Kim, J.T., Ryu, Y.S., Cho, H.M. and Stubbs, N. (2003), "Damage identification in beam-type structures: frequency-based method vs mode-shape-based method", Eng. Struct., 25(1), 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9.
  16. Kong, F., Spanos, P.D., Li, J. and Kougioumtzoglou, I.A. (2014), "Response evolutionary power spectrum determination of chain-like MDOF non-linear structural systems via harmonic wavelets", Int. J. Nonkin. Mech., 66, 3-17. https://doi.org/10.1016/j.ijnonlinmec.2014.06.002.
  17. Kordestani, H., Zhang, C., Masri, S.F. and Shadabfar, M. (2021), "An empirical time-domain trend line-based bridge signal decomposing algorithm using Savitzky-Golay filter", Struct. Control Hlth. Monit., 28(7), e2750. https://doi.org/10.1002/stc.2750.
  18. Lam, H.F. and Yin, T. (2012), "Application of two-dimensional spatial wavelet transform in the detection of an obstructed crack on a thin plate", Struct. Control Hlth. Monit., 19(2), 260-277. https://doi.org/10.1002/stc.429.
  19. Law, S. and Li, X. (2007), "Wavelet-based sensitivity analysis of the impulse response function for damage detection", J. Appl. Mech., 74(2), 375-377. https://doi.org/10.1115/1.2189875.
  20. Lee, S.Y., Huynh, T.C. and Kim, J.T. (2018), "A practical scheme of vibration monitoring and modal analysis for caisson breakwater", Coast. Eng., 137, 103-119. https://doi.org/10.1016/j.coastaleng.2018.03.008.
  21. Lee, S.Y., Kim, J.T., Yi, J.H. and Kang, Y.K. (2009), "Structural health monitoring of harbor caisson-type structures using harmony search method", J. Ocean Eng. Technol., 23(1), 122-128.
  22. Li, J., Hao, H. and Lo, J.V. (2015), "Structural damage identification with power spectral density transmissibility: numerical and experimental studies", Smart Struct. Syst., 15(1), 15-40. http://doi.org/10.12989/sss.2015.15.1.015.
  23. Li, Y., Wang, S., Zhang, M. and Zheng, C. (2016), "An improved modal strain energy method for damage detection in offshore platform structures", J. Marine Sci. Appl., 15(2), 182-192. https://doi.org/10.1007/s11804-016-1350-1.
  24. Mansourabadi, A.S. and Esfandiari, A. (2019), "Structural model updating using sensitivity of wavelet transform coefficients of incomplete structural response", J. Civil Struct. Hlth. Monit., 9(1), 37-51. https://doi.org/10.1007/s13349-018-0316-1.
  25. Mathworks, I. (2014), MATLAB: R2014a, Mathworks Inc., Natick.
  26. Modak, S., Kundra, T. and Nakra, B. (2002), "Comparative study of model updating methods using simulated experimental data", Comput. Struct., 80(5-6), 437-447. https://doi.org/10.1016/S0045-7949(02)00017-2.
  27. Mousavi, A.A., Zhang, C., Masri, S.F. and Gholipour, G. (2020), "Structural damage localization and quantification based on a CEEMDAN Hilbert transform neural network approach: a model steel truss bridge case study", Sensor., 20(5), 1271. https://doi.org/10.3390/s20051271.
  28. Naeim, F. (2007), "Dynamics of structures-theory and applications to earthquake engineering", Earthq. Spectra, 23(2), 491-492. https://doi.org/10.1193/1.2720354.
  29. Nandakumar, P. and Shankar, K. (2016), "Structural damage identification using transfer matrix with lumped crack properties", Inver. Prob. Sci. Eng., 24(3), 422-447. https://doi.org/10.1080/17415977.2015.1047360.
  30. Pedram, M., Esfandiari, A. and Khedmati, M.R. (2016), "Finite element model updating using strain-based power spectral density for damage detection", Struct. Control Hlth. Monit., 23(11), 1314-1333. https://doi.org/10.1002/stc.1833.
  31. Pedram, M., Esfandiari, A. and Khedmati, M.R. (2017), "Damage detection by a FE model updating method using power spectral density: Numerical and experimental investigation", J. Sound Vib., 397, 51-76. https://doi.org/10.1016/j.jsv.2017.02.052.
  32. Providakis, C., Tsistrakis, S., Voutetaki, M., Tsompanakis, Y., Stavroulaki, M., Agadakos, J., ... & Pentes, G. (2015), "A new damage identification approach based on impedance-type measurements and 2D error statistics", Struct. Monit. Mainten., 2(4), 319-338. http://doi.org/10.12989/smm.2015.2.4.319.
  33. Razavi, M. and Hadidi, A. (2020), "Assessment of sensitivity-based FE model updating technique for damage detection in large space structures", Struct. Monit. Mainten., 7(3), 261-281. http://doi.org/10.12989/smm.2020.7.3.261.
  34. Ren, P., Zhou, Z. and Ou, J. (2019), "Non-baseline method for damage detection in truss structures using displacement and strain measurements", Adv. Struct. Eng., 22(3), 818-830. https://doi.org/10.1177/1369433218800949.
  35. Rioul, O. and Vetterli, M. (1991), "Wavelets and signal processing", IEEE Signal Proc. Mag., 8(4), 14-38. https://doi.org/10.1109/79.91217.
  36. Rucka, M. and Wilde, K. (2006), "Application of continuous wavelet transform in vibration based damage detection method for beams and plates", J. Sound Vib., 297(3-5), 536-550. https://doi.org/10.1016/j.jsv.2006.04.015.
  37. Sanayei, M., Esfandiari, A., Rahai, A. and Bakhtiari-Nejad, F. (2012), "Quasi-linear sensitivity-based structural model updating using experimental transfer functions", Struct. Hlth. Monit., 11(6), 656-670. https://doi.org/10.1177/1475921712451952.
  38. Seyedpoor, S. and Montazer, M. (2016), "A damage identification method for truss structures using a flexibility-based damage probability index and differential evolution algorithm", Inver. Prob. Sci. Eng., 24(8), 1303-1322. https://doi.org/10.1080/17415977.2015.1101761.
  39. Sohn, H., Farrar, C.R., Hemez, F.M. and Czarnecki, J.J. (2002), "A review of structural health review of structural health monitoring literature 1996-2001", Los Alamos National Laboratory, USA, 1.
  40. Valente, C. and Spina, D. (1997), "Crack detection in beam elements using the gabor transform", Proceedings of Adaptive Computing in Engineering Design and Control'96, 147-156.
  41. Wei, Z., Liu, J. and Lu, Z. (2016), "Damage identification in plates based on the ratio of modal strain energy change and sensitivity analysis", Inver. Prob. Sci. Eng., 24(2), 265-283. https://doi.org/10.1080/17415977.2015.1017489.
  42. Zhang, Y., Wang, L. and Xiang, Z. (2012), "Damage detection by mode shape squares extracted from a passing vehicle", J. Sound Vib., 331(2), 291-307. https://doi.org/10.1016/j.jsv.2011.09.004.
  43. Zhang, Z., Sun, C. and Jahangiri, V. (2022), "Structural damage identification of offshore wind turbines: A two-step strategy via FE model updating", Struct. Control Hlth. Monit., e2872. https://doi.org/10.1002/stc.2872.
  44. Zheng, Z., Lu, Z., Chen, W. and Liu, J. (2015), "Structural damage identification based on power spectral density sensitivity analysis of dynamic responses", Comput. Struct., 146, 176-184. https://doi.org/10.1016/j.compstruc.2014.10.011.
  45. Zhong, S. and Oyadiji, S.O. (2011), "Detection of cracks in simply-supported beams by continuous wavelet transform of reconstructed modal data", Comput. Struct., 89(1), 127-148. https://doi.org/10.1016/j.compstruc.2010.08.008.