DOI QR코드

DOI QR Code

Material and geometric properties of hoop-type PZT interface for damage-sensitive impedance responses in prestressed tendon anchorage

  • Dang, Ngoc-Loi (Urban Infrastructure Faculty, Mien Tay Construction University) ;
  • Pham, Quang-Quang (Department of Ocean Engineering, Pukyong National University) ;
  • Kim, Jeong-Tae (Department of Ocean Engineering, Pukyong National University)
  • 투고 : 2020.05.17
  • 심사 : 2022.03.31
  • 발행 : 2022.06.25

초록

In this study, parametric analyses on a hoop-type PZT (lead-zirconate-titanate) interface are performed to estimate the effects of the PZT interface's materials and geometries on sensitivities of impedance responses under strand breakage. The paper provides a guideline for installing the PZT interface suitable in tendon anchorages for damage-sensitive impedance signatures. Firstly, the concept of the PZT interface-based impedance monitoring technique in prestressed tendon anchorage is briefly described. A FE (finite element) analysis is conducted on a multi-strands anchorage equipped with a hoop-type PZT interface for analyzing materials and geometric effects. Various material properties, geometric sizes of the interface, and PZT sensor are simulated under two states of prestressing force for acquiring impedance responses. Changes in impedance signals are statistically quantified to analyze the effect of these factors on damage-sensitive impedance monitoring in the tendon anchorage. Finally, experimental analyses are performed to demonstrate the effects of materials and geometrical properties of the PZT interface on damage-sensitive impedance monitoring.

키워드

과제정보

This work was supported by a grant (21CTAP-C163708-01) from the Technology Advancement Research Program funded by Korea Agency for Infrastructure Technology Advancement (KAIA).

참고문헌

  1. Abdullah, A.B.M., Rice, J.A. and Hamilton, H.R. (2015), "Wire breakage detection using relative strain variation in unbonded posttensioning anchors", J. Bridge Eng., 20(1), 1-12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000639.
  2. Ai, D., Lin, C. and Zhu, H. (2020), "Embedded piezoelectric transducers based early-age hydration monitoring of cement concrete added with accelerator/retarder admixtures", J. Intel. Mater. Syst. Struct., 32(8), 847-866. https://doi.org/10.1177/1045389X20969916.
  3. Ai, D., Luo, H. and Zhu, H. (2019), "Numerical and experimental investigation of flexural performance on pre-stressed concrete structures using electromechanical admittance", Mech. Syst. Signal Pr., 128, 244-265. https://doi.org/10.1016/j.ymssp.2019.03.046.
  4. Ai, D., Luo, H., Wang, C. and Zhu, H. (2018), "Monitoring of the load-induced RC beam structural tension/compression stress and damage using piezoelectric transducers", Eng. Struct., 154, 38-51. https://doi.org/10.1016/j.engstruct.2017.10.046.
  5. Aloui, O., Lin, J. and Rhode-Barbarigos, L. (2019), "A theoretical framework for sensor placement, structural identification and damage detection in tensegrity structures", Smart Mater. Struct., 28(12), 125004-1-11. https://doi.org/10.1088/1361-665X/ab3d21.
  6. Asadollahi, P. and Li, J. (2017), "Statistical analysis of modal properties of a cable-stayed bridge through long-term wireless structural health monitoring", J. Bridge Eng., 22(9), 04017051-1-15. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001093.
  7. Bachmann, H., Ammann, W.J., Deischl, F., Eisenmann, J., Floegl, I., Hirsch, G.H., ... & Steinbeisser, L. (2012), Vibration Problems iIn Structures: Practical Guidelines, Birkhauser.
  8. Cervenka, V. and Ganz, H.R. (2014), "Validation of post-tensioning anchorage zones by laboratory testing and numerical simulation", Struct. Concrete, 15(2), 258-268. https://doi.org/10.1002/suco.201300038.
  9. Dang, N.L., Huynh, T.C. and Kim, J.T. (2019), "Local strand-breakage detection in multi-strand anchorage system using an impedance-based stress monitoring method-feasibility study", Sensor. (Basel), 19(5), 1054. https://doi.org/10.3390/s19051054.
  10. Dang, N.L., Huynh, T.C., Pham, Q.Q., Lee, S.Y. and Kim, J.T. (2020a), "Damage-sensitive impedance sensor placement on multi-strand anchorage based on local stress variation analysis", Struct. Control Hlth. Monit., 27, e2547. https://doi.org/10.1002/stc.2547.
  11. Dang, N.L., Pham, Q.Q. and Kim, J.T. (2020b), "Piezoelectric-based hoop-type interface for impedance monitoring of local strand breakage in prestressed multi-strand anchorage", Struct. Control Hlth. Monit., 28(1), 1-20. https://doi.org/10.1002/stc.2649.
  12. Ferrari, R., Froio, D., Rizzi, E., Gentile, C. and Chatzi, E.N. (2019), "Model updating of a historic concrete bridge by sensitivity- and global optimization-based Latin Hypercube Sampling", Eng. Struct., 179, 139-160. https://doi.org/10.1016/j.engstruct.2018.08.004.
  13. Hamed, E. and Frostig, Y. (2006), "Natural frequencies of bonded and unbonded prestressed beams-prestress force effects", J. Sound Vib., 295(1-2), 28-39. https://doi.org/10.1016/j.jsv.2005.11.032.
  14. He, L., Lian, J., Ma, B. and Wang, H. (2014), "Optimal multiaxial sensor placement for modal identification of large structures", Struct. Control Hlth. Monit., 21(1), 61-79. https://doi.org/10.1002/stc.1550.
  15. Hiba, A.J. and Glisic, B. (2019), "Monitoring of prestressing forces in prestressed concrete structures-An overview", Struct. Control Hlth. Monit., 26(8), e2374-1-27. https://doi.org/10.1002/stc.2374.
  16. Ho, D.D., Kim, J.T., Stubbs, N. and Park, W.S. (2012), "Prestress-force estimation in PSC girder using modal parameters and system identification", Adv. Struct. Eng., 15(6), 997-1012. https://doi.org/10.1260/1369-4332.15.6.997.
  17. Hou, R., Xia, Y., Xia, Q. and Zhou, X. (2019), "Genetic algorithm based optimal sensor placement for L1-regularized damage detection", Struct. Control Hlth. Monit., 26(1), e2274-1-14. https://doi.org/10.1002/stc.2274.
  18. Hu, W.H., Said, S., Rohrmann, R.G., Cunha, A. and Teng, J. (2017), "Continuous dynamic monitoring of a prestressed concrete bridge based on strain, inclination and crack measurements over a 14-year span", Struct. Hlth. Monit., 17(5), 1073-1094. https://doi.org/10.1177/1475921717735505.
  19. Huynh, T.C. and Kim, J.T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique", Math. Prob. Eng., 2014, 1-11. https://doi.org/10.1155/2014/784731.
  20. Huynh, T.C. and Kim, J.T. (2017), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Struct. Syst., 20(2), 181-195. https://doi.org/10.12989/sss.2017.20.2.181.
  21. Huynh, T.C., Ho, D.D., Dang, N.L. and Kim, J.T. (2019), "Sensitivity of piezoelectric-based smart interfaces to structural damage in bolted connections", Sensor. (Basel), 19(19), 1-22. https://doi.org/10.3390/s19173670.
  22. Hwang, D., Kim, S. and Kim, H.K. (2021), "Long-term damping characteristics of twin cable-stayed bridge under environmental and operational variations", J. Bridge Eng., 26(9), 04021062-1-13. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001761.
  23. Kim, J.M., Kim, H.W., Park, Y.H., Yang, I.H. and Kim, Y.S. (2012), "FBG sensors encapsulated into 7-wire steel strand for tension monitoring of a prestressing tendon", Adv. Struct. Eng., 15(6), 907-917. https://doi.org/10.1260/1369-4332.15.6.907.
  24. Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021.
  25. Kim, S.H., Park, S.Y. and Jeon, S.J. (2020), "Long-term characteristics of prestressing force in post-tensioned structures measured using smart strands", Appl. Sci., 10(12), 1-15. https://doi.org/10.3390/app10124084.
  26. Kim, S.W., Jeon, B.G., Kim, N.S. and Park, J.C. (2013), "Vision-based monitoring system for evaluating cable tensile forces on a cable-stayed bridge", Struct. Hlth. Monit., 12(5-6), 440-456. https://doi.org/10.1177/1475921713500513.
  27. Li, D., Tan, M., Zhang, S. and Ou, J. (2018), "Stress corrosion damage evolution analysis and mechanism identification for prestressed steel strands using acoustic emission technique", Struct. Control Hlth. Monit., 25(8), 1-11. https://doi.org/10.1002/stc.2189.
  28. Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intel. Mater. Syst. Struct., 5(1), 12-20. https://doi.org/10.1177/1045389X9400500102.
  29. Lim, Y.Y. and Soh, C.K. (2012), "Effect of varying axial load under fixed boundary condition on admittance signatures of electromechanical impedance technique", J. Intel. Mater. Syst. Struct., 23(7), 815-826. https://doi.org/10.1177/1045389X12437888.
  30. Lu, X., Lim, Y.Y. and Soh, C.K. (2018), "A novel electromechanical impedance-based model for strength development monitoring of cementitious materials", Struct. Hlth. Monit., 17(4), 902-918. https://doi.org/10.1177/1475921717725028.
  31. Mehrabi, A.B., Ligozio, C.A., Ciolko, A.T. and Wyatt, S.T. (2010), "Evaluation, rehabilitation planning, and stay-cable replacement design for the hale boggs bridge in Luling, Louisiana", J. Bridge Eng., 15(4), 364-372. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000061.
  32. Min, J., Yun, C.B. and Hong, J.W. (2016), "An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems", Smart Struct. Syst., 17(1), 107-122. https://doi.org/10.12989/sss.2016.17.1.107.
  33. Moustafa, A., Niri, E.D., Farhidzadeh, A. and Salamone, S. (2014), "Corrosion monitoring of post-tensioned concrete structures using fractal analysis of guided ultrasonic waves", Struct. Control Hlth. Monit., 21(3), 438-448. https://doi.org/10.1002/stc.1586.
  34. Na, W.S. (2017), "Distinguishing crack damage from debonding damage of glass fiber reinforced polymer plate using a piezoelectric transducer based nondestructive testing method", Compos. Struct., 159, 517-527. https://doi.org/10.1016/j.compstruct.2016.10.005.
  35. Na, W.S. (2018), "Low cost technique for detecting adhesive debonding damage of glass epoxy composite plate using an impedance based non-destructive testing method", Compos. Struct., 189, 99-106. https://doi.org/10.1016/j.compstruct.2018.01.053.
  36. Nguyen, K.D. and Kim, J.T. (2012), "Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection", Smart Struct. Syst., 9(6), 489-504. https://doi.org/10.12989/sss.2012.9.6.489.
  37. Ni, Y.Q., Xia, H.W., Wong, K.Y. and Ko, J.M. (2012), "In-service condition assessment of bridge deck using long-term monitoring data of strain response", J. Bridge Eng., 17(6), 876-885. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000321.
  38. Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: a review", J. Dyn. Syst. Measure. Control, 123(4), 659-667. https://doi.org/10.1115/1.1410370.
  39. Plastics & Eastomers Selector, https://omnexus.specialchem.com/
  40. Ren, W.X., Chen, G. and Hu, W.H. (2005), "Empirical formulas to estimate cable tension by cable fundamental frequency", Struct. Eng. Mech. Mater., 20(3), 363-380. https://doi.org/10.12989/sem.2005.20.3.363.
  41. Ryu, J.Y., Huynh, T.C. and Kim, J.T. (2017), "Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection", Struct. Monit. Mainten., 4(3), 237-253. https://doi.org/10.12989/smm.2017.4.3.237.
  42. Standards, C. (2009), Design and Construction of Building Components with Fibre-Reinforced Polymers, Mississauga, Ontario, Canada.
  43. Sun, F.P., Chaudhry, Z., Liang, C. and Rogers, C.A. (1995), "Truss structure integrity identification using PZT sensor-actuator", J. Intel. Mater. Syst. Struct., 6(1), 134-139. https://doi.org/10.1177/1045389X9500600117.
  44. Tadros, M.K., Omaishin, N.A., Seguirant, S.J. and Gallt, J.G. (2003), Prestress Losses in Pretensioned HighStrength Concrete Bridge Girders, Transportation Research Board.
  45. Tian, Y., Zhang, C., Jiang, S., Zhang, J. and Duan, W. (2020), "Noncontact cable force estimation with unmanned aerial vehicle and computer vision", Comput.-Aid. Civil Infrastr. Eng., 36(1), 73-88. https://doi.org/10.1111/mice.12567.
  46. Wu, J., Li, W. and Feng, Q. (2018), "Electro-mechanical impedance (EMI) based interlayer slide detection using piezoceramic smart aggregates-a feasibility study", Sensor. (Basel), 18(10), 1-14. https://doi.org/10.3390/s18103524.
  47. Yan, T.H. and Lin, R.M. (2006), "General optimization of sizes or placement for various sensors/actuators in structure testing and control", Smart Mater. Struct., 15(3), 724-736. https://doi.org/10.1088/0964-1726/15/3/008.
  48. Yang, D.H., Yi, T.H., Li, H.N. and Zhang, Y.F. (2018a), "Correlation-based estimation method for cablestayed bridge girder deflection variability under thermal action", J. Perform. Constr. Facil., 32(5), 04018070-1-10. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001212.
  49. Yang, D.H., Yi, T.H., Li, H.N. and Zhang, Y.F. (2018b), "Monitoring and analysis of thermal effect on tower displacement in cable-stayed bridge", Measure., 115, 249-257. https://doi.org/10.1016/j.measurement.2017.10.036.
  50. Yang, M., Gong, J. and Yang, X. (2020), "Refined calculation of time-dependent prestress losses in prestressed concrete girders", Struct. Infrastr. Eng., 16(10), 1430-1446. https://doi.org/10.1080/15732479.2020.1712438.
  51. Yang, Y. and Miao, A. (2010), "Two-dimensional modeling of the effects of external vibration on the PZT impedance signature", Smart Mater. Struct., 19(6), 1-7. https://doi.org/10.1088/0964-1726/19/6/065031.
  52. Yang, Y., Chadha, M., Hu, Z., Vega, M.A., Parno, M.D. and Todd, M.D. (2021), "A probabilistic optimal sensor design approach for structural health monitoring using risk-weighted f-divergence", Mech. Syst. Signal Pr., 161. https://doi.org/10.1016/j.ymssp.2021.107920.
  53. Yang, Y., Lim, Y.Y. and Soh, C.K. (2008), "Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures: I. Experiment", Smart Mater. Struct., 17(3), 035008-1-14. https://doi.org/10.1088/0964-1726/17/3/035008.
  54. Yao, Y. and Glisic, B. (2015), "Sensing sheets: Optimal arrangement of dense array of sensors for an improved probability of damage detection", Struct. Hlth. Monit., 14(5), 513-531. https://doi.org/10.1177/1475921715599049.
  55. Zhang, S., Shen, R., Wang, Y., De Roeck, G., Lombaert, G. and Dai, K. (2020), "A two-step methodology for cable force identification", J. Sound Vib., 472, 115201-1-16. https://doi.org/10.1016/j.jsv.2020.115201.
  56. Zhou, G.D., Yi, T.H., Zhang, H. and Li, H.N. (2015), "Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm", Smart Struct. Syst., 16(2), 243-262. https://doi.org/10.12989/sss.2015.16.2.243.