References
- Achilli, A., Bernagozzi, G., Betti, R., Diotallevi, P.P., Landi, L., Quqa, S. and Tronci, E.M. (2021), "On the use of multivariate autoregressive models for vibration-based damage detection and localization", Smart Struct. Syst., 27(2), 335-350. https://doi.org/10.12989/sss.2021.27.2.335.
- Ahmadi, H.R., Mahdavi, N. and Bayat, M. (2021), "A new index based on short time fourier transform for damage detection in bridge piers", Comput. Concrete, 27(5), 447-455. https://doi.org/10.12989/cac.2021.27.5.447.
- Azim, M.R., Zhang, H. and Gul, M. (2020), "Damage detection of railway bridges using operational vibration data: Theory and experimental verifications", Struct. Monit. Mainten., 7(2), 149-166. https://doi.org/10.12989/smm.2020.7.2.149.
- Balafas, K., Kiremidjian, A.S. and Rajagopal, R. (2018), "The wavelet transform as a Gaussian process for damage detection", Struct. Control Hlth. Monit., 25(2), e2087. https://doi.org/10.1002/stc.2087.
- Cao, M., Sha, G., Gao, Y. and Ostachowicz, W. (2017), "Structural damage identification using damping: a compendium of uses and features", Smart Mater. Struct., 26(4), 043001. https://doi.org/10.1088/0964-1726/26/4/043001
- Chatterjee, A. and Paliwal, K. (2016), "Spectral subband centroids for tone vocoder simulations of cochlear implants", Int. J. Signal Pr. Syst., 4(4), 289-294.
- Deng, X., Tian, X., Chen, S. and Harris, C.J. (2018), "Deep principal component analysis based on layerwise feature extraction and its application to nonlinear process monitoring", IEEE Trans. Control Syst. Technol., 27(6), 2526-2540. https://doi.org/10.1109/TCST.2018.2865413.
- Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), "Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review", Technical Report, Los Alamos National Lab., NM, United States.
- Esfandiari, A., Nabiyan, M.S. and Rofooei, F.R. (2020), "Structural damage detection using principal component analysis of frequency response function data", Struct. Control Hlth. Monit., 27(7), e2550. https://doi.org/10.1002/stc.2550.
- Ghoulem, K., Kormi, T. and Bel Hadj Ali, N. (2020), "Damage detection in nonlinear civil structures using kernel principal component analysis", Adv. Struct. Eng., 23(11), 2414-2430. https://doi.org/10.1177/1369433220913207.
- Gillich, G., Ntakpe, J., Wahab, M.A., Praisach, Z. and Mimis, M. (2017), "Damage detection in multi-span beams based on the analysis of frequency changes", J. Phys.: Conf. Ser., 842, 012033. https://doi.org/10.1088/1742-6596/842/1/012033
- Goyal, D. and Pabla, B. (2016), "The vibration monitoring methods and signal processing techniques for structural health monitoring: a review", Arch. Comput. Meth. Eng., 23(4), 585-594. https://doi.org/10.1007/s11831-015-9145-0.
- Gul, M. and Catbas, F.N. (2011), "Structural health monitoring and damage assessment using a novel time series analysis methodology with sensor clustering", J. Sound Vib., 330(6), 1196-1210. https://doi.org/10.1016/j.jsv.2010.09.024.
- Hamidian, D., Salajegheh, E. and Salajegheh, J. (2018), "Damage detection technique for irregular continuum structures using wavelet transform and fuzzy inference system optimized by particle swarm optimization", Struct. Eng. Mech., 67(5), 457-464. https://doi.org/10.12989/sem.2018.67.5.457.
- Kaloop, M.R. and Hu, J.W. (2015), "Stayed-cable bridge damage detection and localization based on accelerometer health monitoring measurements", Shock Vib., 2015, Article ID 102680. https://doi.org/10.1155/2015/102680.
- Kesavan, K.N. and Kiremidjian, A.S. (2012), "A wavelet-based damage diagnosis algorithm using principal component analysis", Struct. Control Hlth. Monit., 19(8), 672-685. https://doi.org/10.1002/stc.462.
- Lee, J.M., Yoo, C., Choi, S.W., Vanrolleghem, P.A. and Lee, I.B. (2004), "Nonlinear process monitoring using kernel principal component analysis", Chem. Eng. Sci., 59(1), 223-234. https://doi.org/10.1016/j.ces.2003.09.012.
- Li, R., Gu, H., Hu, B. and She, Z. (2019), "Multi-feature fusion and damage identification of large generator stator insulation based on lamb wave detection and SVM method", Sensor., 19(17), 3733. https://doi.org/10.3390/s19173733.
- Li, S., Li, H., Liu, Y., Lan, C., Zhou, W. and Ou, J. (2014), "SMC structural health monitoring benchmark problem using monitored data from an actual cable-stayed bridge", Struct. Control Hlth. Monit., 21(2), 156-172. https://doi.org/10.1002/stc.1559.
- Liang, Y., Li, D., Song, G. and Feng, Q. (2018), "Frequency Co-integration-based damage detection for bridges under the influence of environmental temperature variation", Measure., 125, 163-175. https://doi.org/10.1016/j.measurement.2018.04.034.
- Moughty, J.J. and Casas, J.R. (2017), "A state of the art review of modal-based damage detection in bridges: development, challenges, and solutions", Appl. Sci., 7(5), 510. https://doi.org/10.3390/app7050510.
- Nguyen, D.H., Bui, T.T., De Roeck, G. and Wahab, M.A. (2019), "Damage detection in Ca-Non Bridge using transmissibility and artificial neural networks", Struct. Eng. Mech., 71(2), 175-183. https://doi.org/10.12989/sem.2019.71.2.175.
- Nicolson, A., Hanson, J., Lyons, J. and Paliwal, K. (2018), "Spectral subband centroids for robust speaker identification using marginalization-based missing feature theory", Int. J. Signal Pr. Syst., 6(1), 12-16. https://doi.org/10.18178/ijsps.6.1.12-16
- Nie, Z., Guo, E. and Ma, H. (2019), "Structural damage detection using wavelet packet transform combining with principal component analysis", Int. J. Lifecy. Perform. Eng., 3(2), 149-170. https://doi.org/10.1504/ijlcpe.2019.100337
- Oliver, J.A., Kosmatka, J.B., Farrar, C.R. and Conte, J.P. (2016), "Frequency domain statistical damage identification applied to an experimental composite plate", 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, San Diego, California, January.
- Pan, H., Azimi, M., Yan, F. and Lin, Z. (2018), "Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges", J. Bridge Eng., 23(6), 04018033. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001199.
- Pedram, M., Esfandiari, A. and Khedmati, M.R. (2018), "Frequency domain damage detection of plate and shell structures by finite element model updating", Invers. Prob. Sci. Eng., 26(1), 100-132. https://doi.org/10.1080/17415977.2017.1309398.
- Ramezani, M. and Bahar, O. (2021), "Structural damage identification for elements and connections using an improved genetic algorithm", Smart Struct. Syst., 28(5), 643-660. https://doi.org/10.12989/sss.2021.27.5.643.
- Razavi, M. and Hadidi, A. (2020), "Assessment of sensitivity-based FE model updating technique for damage detection in large space structures", Struct. Monit. Mainten., 7(3), 261-281. https://doi.org/10.12989/smm.2020.7.3.261.
- Reynders, E., Wursten, G. and De Roeck, G. (2014), "Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification", Struct. Hlth. Monit., 13(1), 82-93. https://doi.org/10.1177/1475921713502836.
- Sajedi, S.O. and Liang, X. (2020), "A data-driven framework for near real-time and robust damage diagnosis of building structures", Struct. Control Hlth. Monit., 27(3), e2488. https://doi.org/10.1002/stc.2488.
- Santos, A., Silva, M., Sales, C., Costa, J. and Figueiredo, E. (2015), "Applicability of linear and nonlinear principal component analysis for damage detection", 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, May.
- Shokrani, Y., Dertimanis, V.K., Chatzi, E.N. and N. Savoia, M. (2018), "On the use of mode shape curvatures for damage localization under varying environmental conditions", Struct. Control Hlth. Monit., 25(4), e2132. https://doi.org/10.1002/stc.2132.
- Shyamala, P., Mondal, S. and Chakraborty, S. (2018), "Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm", Struct. Monit. Mainten., 5(2), 243-260. https://doi.org/10.12989/smm.2018.5.2.243.
- Sohn, H., Worden, K. and Farrar, C.R. (2002), "Statistical damage classification under changing environmental and operational conditions", J. Intel. Mater. Syst. Struct., 13(9), 561-574. https://doi.org/10.1106/104538902030904.
- Soo Lon Wah, W., Chen, Y.T., Roberts, G.W. and Elamin, A. (2018), "Separating damage from environmental effects affecting civil structures for near real-time damage detection", Struct. Hlth. Monit., 17(4), 850-868. https://doi.org/10.1177/1475921717722060.
- Sousa Tome, E., Pimentel, M. and Figueiras, J. (2019), "Online early damage detection and localisation using multivariate data analysis: Application to a cable-stayed bridge", Struct. Control Hlth. Monit., 26(11), e2434. https://doi.org/10.1002/stc.2434.
- Xin, Y., Hao, H. and Li, J. (2019), "Operational modal identification of structures based on improved empirical wavelet transform", Struct. Control Hlth. Monit., 26(3), e2323. https://doi.org/10.1002/stc.2323.
- Yin, T. and Zhu, H.P. (2018), "Probabilistic damage detection of a steel truss bridge model by optimally designed Bayesian neural network", Sensor., 18(10), 3371. https://doi.org/10.3390/s18103371.
- Zhang, J. and Aoki, T. (2019), "A frequency-domain noniterative algorithm for structural parameter identification of shear buildings subjected to frequent earthquakes", Comput.-Aid. Civil Infrastr. Eng., 35(6), 615-627. https://doi.org/10.1111/mice.12502.
- Zhang, Z., Sun, C., Li, C. and Sun, M. (2019), "Vibration based bridge scour evaluation: A data-driven method using support vector machines", Struct. Monit. Mainten., 6(2), 125-145. https://doi.org/10.12989/smm.2019.6.2.125.