DOI QR코드

DOI QR Code

이중 링 Add/Drop 필터와 All-pass 지연 필터로 구성된 이차원 OCDMA 인코더/디코더

Two-dimensional OCDMA Encoder/Decoder Composed of Double Ring Add/Drop Filters and All-pass Delay Filters

  • Chung, Youngchul (Department of Electronics and Communications Engineering, Kwangwoon University)
  • 투고 : 2022.03.02
  • 심사 : 2022.04.07
  • 발행 : 2022.06.25

초록

이중 링 add/drop 필터와 all-pass 지연 필터로 구성된 이차원 optical code division multiple access (OCDMA) 인코더/디코더를 제안하고, 설계 예시 및 수치해석을 통하여 실현 가능성을 확인하였다. 제안된 OCDMA 인코더/디코더의 칩 면적은 지연 도파로를 사용하는 기존 OCDMA 인코더/디코더에 비하여 1/3 정도로 줄어든다. 제안된 소자의 성능을 모델링하기 위하여 고속 푸리에 변환(fast Fourier transform, FFT) 및 전달 행렬 기법을 사용하였다. 정확한 코드로 디코딩된 펄스의 중심에서 자기상관 피크 값은 어긋난 파장 호핑 코드 및 스펙트럼 위상 코드로 디코딩된 경우의 최대 교차상관 레벨에 비하여 3배 이상으로 관측되었다. 이를 통하여 forward error correction (FEC) 한계에 해당하는 10-3 이하의 비트 에러 오율을 얻을 수 있음을 알 수 있다.

A two-dimensional optical code division multiple access (OCDMA) encoder/decoder, which is composed of add/drop filters and all-pass filters for delay operation, is proposed. An example design is presented, and its feasibility is illustrated through numerical simulations. The chip area of the proposed OCDMA encoder/decoder could be about one-third that of a previous OCDMA device employing delay waveguides. Its performance is numerically investigated using the transfer-matrix method combined with the fast Fourier transform. The autocorrelation peak level over the maximum cross-correlation level for incorrect wavelength hopping and spectral phase code combinations is greater than 3 at the center of the correctly decoded pulse, which assures a bit error rate lower than 10-3, corresponding to the forward error-correction limit.

키워드

과제정보

이 논문은 2022년도 광운대학교 연구년에 의하여 연구되었음.

참고문헌

  1. Z. Wang, M. P. Fok, and P. R. Prucnal, "Physical encoding in optical layer security," J. Cyber Secur. Mobil. 1, 83-100 (2012).
  2. J. P. Heritage and A. M. Weiner, "Advances in spectral optical code-division multiple-access communications," IEEE J. Quantum Electron. 13, 1351-1369 (2007). https://doi.org/10.1109/JSTQE.2007.901891
  3. J. A. Salehi, "Code division multiple-access techniques in optical fiber networks, Part I: Fundamental principles," IEEE Trans. Commun. 37, 824-842 (1989). https://doi.org/10.1109/26.31181
  4. M. E. Marhic, "Trends in optical CDMA," Proc. SPIE 1787, 80-98 (1992). https://doi.org/10.1117/12.139337
  5. D. D. Sampson, G. J. Pendock, and R. A. Griffin, "Photonic code-division multiple-access communications," Fiber Integr. Opt. 16, 129-157 (1997). https://doi.org/10.1080/01468039708202284
  6. L. Tancevski and I. Andovovic, "Wavelength hopping/time spreading code division multiple access systems," Electron. Lett. 30, 1388-1390 (1994). https://doi.org/10.1049/el:19940942
  7. L. Tancevski and I. Andonovic, "Hybrid wavelength hopping/ time spreading schemes for use in massive optical networks with increased security," J. Light. Technol. 14, 2636-2647 (1996). https://doi.org/10.1109/50.545782
  8. X. Wang and K. T. Chan, "A sequentially self-seeded Fabry-Perot laser for two-dimensional encoding/decoding of optical pulses," IEEE J. Quantum Electron. 39, 83-90 (2003). https://doi.org/10.1109/JQE.2002.806201
  9. P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, "A comparative study of the performance of seven-and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings," J. Light. Technol. 9, 1352-1365 (2001).
  10. P. C. Teh, M. Ibsen, L. B. Fu, J. H. Lee, Z. Yusoff, and D. J. Richardson, "A 16-chnnel OCDMA system (4 OCDM × 4 WDM) based on 16-chip, 20 Gchip/s superstructure fibre Bragg gratings and DFB fibre laser transmitters," in Proc. Optical Fiber Communication Conference and Exhibit-OFC'2002 (Anaheim, CA, USA, Mar. 17-22, 2002), pp. 600-601.
  11. A. Agarwal, P. Toliver, R. Menendez, S. Etemad, J. Jackel, J. Young, T. Banwell, B. E. Little, S. T. Chu, W. Chen, W. Chen, J. Hryniewicz, F. Johnson, D. Gill, O. King, R. Davidson, K. Donovan, and P. J. Delfyett, "Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications," J. Light. Technol. 24, 77-87 (2006). https://doi.org/10.1109/JLT.2005.861145
  12. X. Wang and Z. Gao, "Novel reconfigurable two-dimensional coherent optical en/decoder based on coupled micro-ring reflector," IEEE Photonics Technol. Lett. 23, 591-593 (2011). https://doi.org/10.1109/LPT.2011.2116155
  13. Z. Ji, D. Jia, P. Nie, H. Zhang, D. Zhang, and Y. Zhang, "Two-dimensional coherent optical en/decoder using parallel-cascaded coupled third-order microring resonator," Opt. Commun. 347, 123-129 (2015). https://doi.org/10.1016/j.optcom.2015.02.016
  14. Y. Chung, "Design and simulation of two-dimensional OCDMA en/decoder composed of double ring add/drop filters and delay waveguides," J. Opt. Soc. Korea 20, 257-262 (2016). https://doi.org/10.3807/JOSK.2016.20.2.257
  15. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Opt. Express 12, 90-103 (2004). https://doi.org/10.1364/OPEX.12.000090
  16. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," IEEE J. Light. Technol. 22, 1734-1740 (2004). https://doi.org/10.1109/JLT.2004.831182
  17. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Light. Technol. 15, 998-1005 (1997). https://doi.org/10.1109/50.588673
  18. G. P. Agrawal, Fiber-optic Communication Systems, 4th ed., (John Wiley & Sons, USA, 2010).
  19. F. Chang, K. Onohara, and T. Mizuochi, "Forward error correction for 100 G transport networks," IEEE Commun. Mag. 48, S48-S55 (2010). https://doi.org/10.1109/MCOM.2010.5434378