DOI QR코드

DOI QR Code

Atomic Layer Deposition of Vanadium Pentoxide on Carbon Electrode for Enhanced Capacitance Performance in Capacitive Deionization

  • Chung, Sangho (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Bong, Sungyool (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Jaeyoung (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
  • Received : 2022.04.13
  • Accepted : 2022.05.16
  • Published : 2022.06.10

Abstract

We firstly observed that activated carbon (AC) deposited by atomic-layer vanadium pentoxide (V2O5) was used as CDI electrodes to utilize the high dielectric constant for enhancing the capacitance equipped with atomic layer deposition (ALD). It was demonstrated that the vanadium pentoxide (V2O5) with sub-nanometer layer was effectively deposited onto activated carbon, and the electric double-layer capacitance of the AC was improved due to an increase in the surface charge density originated from polarization, leading to high ion removal in CDI operation. It was confirmed that the performance of modified-AC increases more than 200%, comparable to that of pristine-AC under 1.5 V at 20 mL min-1 in CDI measurements.

Keywords

Acknowledgement

This work was also supported by the GIST Research Institute (GRI) grant funded by the GIST in 2022.

References

  1. J. Oladunni, J. H. Zain, A. Hai, F. Banat, G. Bharath, and E. Alhseinat, A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice, Sep. Purif. Technol,. 207, 291-320 (2018). https://doi.org/10.1016/j.seppur.2018.06.046
  2. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review), Desalination, 228, 10-29 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  3. M. A. Anderson, A. L. Cudero, and J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water, Comparison to present desalination practices: Will it compete? Electrochim. Acta, 55, 3845-3856 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  4. S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388-1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  5. H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Strome in korperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche, Ann. Phys., 165, 211-233 (1853). https://doi.org/10.1002/andp.18531650603
  6. B. A. Fellman, M. Atieh, and E. N. Wang, Carbon-based electric double layer capacitors for water desalination, ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting Issue PARTS A AND B, 275-279 (2010).
  7. J. Farmer, D. Fix, and G. Mack, Capacitive deionization of water: An innovative new process, Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation 2, 1215-1220 (1995).
  8. L. Khezami, A. Chetouani, B. Taouk, and R. Capart, Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan, Powder Technol., 157, 48-56 (2005). https://doi.org/10.1016/j.powtec.2005.05.009
  9. M. K. B. Gratuito, T. Panyathanmaporn, R.-A. Chumnanklang, N. Sirinuntawittaya, and A. Dutta, Production of activated carbon from coconut shell: Optimization using response surface methodology, Bioresour. Technol., 99, 4887-4895 (2008). https://doi.org/10.1016/j.biortech.2007.09.042
  10. A. L. Ahmad, M. M. Loh, and J. A. Aziz, Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption, Dyes Pigm., 75, 263-272 (2007). https://doi.org/10.1016/j.dyepig.2006.05.034
  11. H. Teng, T.-S. Yeh, and L.-Y. Hsu, Preparation of activated carbon from bituminous coal with phosphoric acid activation, Carbon, 36, 1387-1395 (1998). https://doi.org/10.1016/S0008-6223(98)00127-4
  12. R. Kumar, S. Sen Gupta, S. Katiyar, V. K. Raman, S. K. Varigala, T. Pradeep, and A. Sharma, Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization, Carbon, 99, 375-383 (2016). https://doi.org/10.1016/j.carbon.2015.12.004
  13. P. Xu, J. E. Drewes, D. Heil, and G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 42, 2605-2617 (2008). https://doi.org/10.1016/j.watres.2008.01.011
  14. H. Li, L. Zou, L. Pan, and Z. Sun, Novel Graphene-Like Electrodes for Capacitive Deionization, Environ. Sci. Technol., 44, 8692-8697 (2010). https://doi.org/10.1021/es101888j
  15. H. Li, T. Lu, L. Pan, Y. Zhang, and Z. Sun, Electrosorption behavior of graphene in NaCl solutions, J. Mater. Chem., 19, 6773-6779 (2009). https://doi.org/10.1039/b907703k
  16. H. Li, L. Zou, L. Pan, and Z. Sun, Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Sep. Purif. Technol., 75, 8-14 (2010). https://doi.org/10.1016/j.seppur.2010.07.003
  17. L. Wang, M. Wang, Z.-H. Huang, T. Cui, X. Gui, F. Kang, K. Wang, and D. Wu, Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 21, 18295-18299 (2011). https://doi.org/10.1039/c1jm13105b
  18. C. Nie, L. Pan, Y. Liu, H. Li, T. Chen, T. Lu, and Z. Sun, Electrophoretic deposition of carbon nanotubes-polyacrylic acid composite film electrode for capacitive deionization, Electrochim. Acta, 66, 106-109 (2012). https://doi.org/10.1016/j.electacta.2012.01.064
  19. Y. Wang, L. Zhang, Y. Wu, S. Xu, and J. Wang, Polypyrrole/carbon nanotube composites as cathode material for performance enhancing of capacitive deionization technology, Desalination, 354, 62-67 (2014). https://doi.org/10.1016/j.desal.2014.09.021
  20. Y. Wang, R. Wang, S. Xu, Q. Liu, and J. Wang, Polypyrrole/polyaniline composites with enhanced performance for capacitive deionization, Desalin. Water Treat., 54, 3248-3256 (2015). https://doi.org/10.1080/19443994.2014.907748
  21. W.-Y. Huang, J. Wang, Y.-M. Liu, Q.-S. Zheng, and C.-Y. Li, Inhibitory effect of Malvidin on TNF-α-induced inflammatory response in endothelial cells, Eur. J. Pharmacol., 723, 67-72 (2014). https://doi.org/10.1016/j.ejphar.2013.11.041
  22. X. Song, H. Liu, L. Cheng, and Y. Qu, Surface modification of coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption, Desalination, 255, 78-83 (2010). https://doi.org/10.1016/j.desal.2010.01.011
  23. C. Y. Yin, M. K. Aroua, and W. M. A. W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol. 52, 403-415 (2007). https://doi.org/10.1016/j.seppur.2006.06.009
  24. Y. Li, Z. Huang, P. K. Kalambate, Y. Zhong, Z. Huang, M. Xie, Y. Shen, and Y. Huang, V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery, Nano Energy, 60, 752-759 (2019). https://doi.org/10.1016/j.nanoen.2019.04.009
  25. B. Jeon, C. Ko, A. C. T. van Duin, and S. Ramanathan, Chemical stability and surface stoichiometry of vanadium oxide phases studied by reactive molecular dynamics simulations, Surf. Sci., 606, 516-522 (2012). https://doi.org/10.1016/j.susc.2011.11.021
  26. X. Liu, J. Zeng, H. Yang, K. Zhou, and D. Pan, V2O5-Based nanomaterials: synthesis and their applications, RSC Adv., 8, 4014-4031 (2018). https://doi.org/10.1039/C7RA12523B
  27. Y. S. Jung, A. S. Cavanagh, L. A. Riley, S.-H. Kang, A. C. Dillon, M. D. Groner, S. M. George, and S.-H. Lee, Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries, Adv. Mater., 22, 2172-2176 (2010). https://doi.org/10.1002/adma.200903951
  28. Y. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George, and S.-H. Lee, Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition, J. Electrochem. Soc., 157, A75 (2009). https://doi.org/10.1149/1.3258274
  29. D. M. Piper, J. J. Travis, M. Young, S.-B. Son, S. C. Kim, K. H. Oh, S. M. George, C. Ban, and S.-H. Lee, Reversible high-capacity si nanocomposite anodes for lithium-ion batteries enabled by molecular layer deposition, Adv. Mater., 26, 1596- 1601 (2014). https://doi.org/10.1002/adma.201304714
  30. Y. He, D. M. Piper, M. Gu, J. J. Travis, S. M. George, S.-H. Lee, A. Genc, L. Pullan, J. Liu, S. X. Mao, J.-G. Zhang, C. Ban, and C. Wang, In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries, ACS Nano, 8, 11816-11823 (2014). https://doi.org/10.1021/nn505523c
  31. M. J. Young, A. M. Holder, S. M. George, and C. B. Musgrave, Charge storage in cation incorporated α-MnO2, Chem. Mater., 27, 1172-1180 (2015). https://doi.org/10.1021/cm503544e
  32. Z. Peng, D. Zhang, L. Shi, T. Yan, S. Yuan, H. Li, R. Gao, and J. Fang, Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures, J. Phys. Chem. C, 115, 17068-17076 (2011). https://doi.org/10.1021/jp2047618
  33. K.-K. Park, J.-B. Lee, P.-Y. Park, S.-W. Yoon, J.-S. Moon, H.-M. Eum, and C.-W. Lee, Development of a carbon sheet electrode for electrosorption desalination, Desalination, 206, 86-91 (2007). https://doi.org/10.1016/j.desal.2006.04.051
  34. S. Chung, J. K. Lee, J. D. Ocon, Y.-I. Son, and J. Lee, Carbon electrodes in capacitive deionization process, Appl. Chem. Eng., 25, 346-351 (2014). https://doi.org/10.14478/ACE.2014.1080