DOI QR코드

DOI QR Code

The Role of Acid in the Synthesis of Red-Emitting Carbon Dots

장파장 형광 탄소 양자점 제조에 있어서 산의 역할에 대한 연구

  • Yun, Sohee (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Jinhee (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Choi, Jin-sil (Department of Chemical and Biological Engineering, Hanbat National University)
  • 윤소희 (한밭대학교 화학생명공학과) ;
  • 이진희 (한밭대학교 화학생명공학과) ;
  • 최진실 (한밭대학교 화학생명공학과)
  • Received : 2022.05.02
  • Accepted : 2022.05.27
  • Published : 2022.06.10

Abstract

Carbon dots (CDs) are few nanometer-sized carbon-based nanoparticles and emerging candidate materials in various fields such as biosensors and bioimaging due to their excellent optical properties and high biocompatibility. However, most CDs, emitting blue light, have limited their application in biomedical fields due to the low penetration of short-wavelength lights into the biological system. Therefore, there has been enormous need to develop long-wavelength emitting CDs. In this study, red-emitting CDs were successfully synthesized through the hydrothermal reaction of p-phenylenediamine with hydrochloric acid. In addition, the effect of the amount of hydrochloric acid on the formation of carbon dots, resulting in the variation of the chemical structures of CDs, were investigated, which was confirmed with the intensive structural analyses using infrared and X-ray photoelectron spectroscopy. It was found that the chemical structure of CDs governed their optical properties and quantum yield. Therefore, this study provides an insight into the role of acid in forming red-emitting CDs as the optimal probe for biomedical application.

탄소점은 수 nm 크기의 탄소 기반 나노 입자로서 높은 생체 적합성, 우수한 발광 특성 등의 장점으로 인해 바이오 센서 및 바이오 이미징 등 다양한 분야에 응용되고 있다. 하지만 청색광을 발광하는 대부분의 탄소점은 해당 파장의 빛이 생물학적 조직에 대해서 약한 침투성을 보여주기 때문에 생물 의학 분야에서 응용에 한계가 있다. 이를 극복하기 위해 장파장 영역에서의 형광을 방출하는 탄소점 개발의 필요성이 커지고 있다. 본 연구에서는 p-페닐렌다이아민에 염산을 첨가하여 산화 후 중합시킴으로써 장파장 빛을 발광하는 탄소점을 획득할 수 있었다. 이때 염산의 양에 따라 탄소점의 화학적 구조가 영향을 받음을 적외선 분광과 X-선 광전자 분광 분석을 통해 확인할 수 있었다. 이러한 탄소점의 화학적 구조 변화는 이들의 흡광, 형광, 그리고 형광 수율에 영향을 끼쳤다. 이 연구는 장파장을 가지는 탄소점을 합성함에 있어서 영향을 주는 인자 (산)에 대한 이해를 높일 수 있었으며 이를 기반으로 바이오 센서 등의 다양한 생물의학 분야에 높은 응용 가능성을 가지는 효과적인 탄소점의 설계가 가능할 것으로 보인다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국 연구 재단의 지원을 받아 수행된 연구임(No. 2020R1C1C101186312314820922601).

References

  1. Y. Choi, Y. Choi, O.-H. Kwon, and B.-S. Kim, Carbon dots: Bottom-up syntheses, properties, and light harvesting applications, Chem. - Asian J., 13, 586-598 (2018). https://doi.org/10.1002/asia.201701736
  2. R. Das, R. Bandyopadhyay, and P. Pramanik, Carbon quantum dots from natural resource: A review, Mater. Today Chem., 8, 96-109 (2018). https://doi.org/10.1016/j.mtchem.2018.03.003
  3. M. K. Barman and A. Patra, Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots J. Photochem. Photobiol. C Photochem. Rev., 37, 1-22 (2018). https://doi.org/10.1016/j.jphotochemrev.2018.08.001
  4. B-S. Jeong, Optimization of the emission spectrum of red color in quantum dot-organic light emitting diodes, Appl. Chem. Eng., 32, 214-218 (2021). https://doi.org/10.14478/ACE.2020.1102
  5. Y. I. Park, Inorganic nanoparticles for near-infrared-II fluorescence imaging, Appl. Chem. Eng., 33, 17-27 (2022).
  6. H. Ding, X.-X. Zhou, J.-S. Wei, X.-B. Li, B.-T. Qin, X.-B. Chen and H.-M. Xiong, Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications, Carbon, 167, 322-344 (2020). https://doi.org/10.1016/j.carbon.2020.06.024
  7. X. Shi, H. Meng, Y. Sun, L. Qu, Y. Lin, Z. Li, and D. Du, Far-red to near-infrared carbon dots: Preparation and applications in biotechnology, Small, 15, 1901507 (2019). https://doi.org/10.1002/smll.201901507
  8. W. Li, G. Zhang, and L. Liu, Near-infrared inorganic nanomaterials for precise diagnosis and therapy, Front. Bioeng. Biotechnol., 9, 768927 (2021). https://doi.org/10.3389/fbioe.2021.768927
  9. Z. Zhu, Y. Zhai, Z. Li, P. Zhu, S. Mao, C. Zhu, D. Du, L. A. Belfiore, J. Tang, and Y. Lin, Red carbon dots: Optical property regulations and applications, Mater. Today, 30, 52-79 (2019). https://doi.org/10.1016/j.mattod.2019.05.003
  10. A. Pal, M. P. Sk, and A. Chattopadhyay, Recent advances in crystalline carbon dots for superior application potential, Mater. Adv., 1, 525-553 (2020). https://doi.org/10.1039/d0ma00108b
  11. W. Ji, J. Yu, J. Cheng, L. Fu, Z. Zhang, B. Li, L. Chen, and X. Wang, Dual-emissive near-infrared carbon dot-based ratiometric fluorescence sensor for lysozyme, ACS Appl. Nano Mater., 5, 1656-1663 (2022). https://doi.org/10.1021/acsanm.1c04435
  12. H. Ding, J.-S. Wei, N. Zhong, Q.-Y. Gao, and H.-M. Xiong, Highly efficient red-emitting carbon dots with gram-scale yield for bioimaging, Langmuir, 33, 12635-12642 (2017). https://doi.org/10.1021/acs.langmuir.7b02385
  13. Y. Qu, X. Bai, D. Li, X. Zhang, C. Liang, W. Zheng, and S. Qu, Solution-processable carbon dots with efficient solid-state red/nearinfrared emission, J. Colloid Interface Sci., 613, 547-553 (2022). https://doi.org/10.1016/j.jcis.2021.12.192
  14. H. Ding, J.-S. Wei, P. Zhang, Z.-Y. Zhou, Q.-Y. Gao, and H.-M. Xiong, Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths Small, 14, 1800612 (2018). https://doi.org/10.1002/smll.201800612
  15. Z. Wang, F. Yuan, X. Li, Y. Li, H. Zhong, L. Fan, and S. Yang, 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes, Adv. Mater., 29, 1702910 (2017). https://doi.org/10.1002/adma.201702910
  16. H. Jia, Z. Wang, T. Yuan, F. Yuan, X. Li, Y. Li, Z. Tan, L. Fan, and S. Yang, Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots, Adv. Sci., 6, 1900397 (2019). https://doi.org/10.1002/advs.201900397
  17. W. Gao, H. Song, X. Wang, X. Liu, X. Pang, Y. Zhou, B. Gao, and X. Peng, Carbon dots with red emission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo, ACS Appl. Mater. Interfaces, 10, 1147-1154 (2018). https://doi.org/10.1021/acsami.7b16991
  18. F. Yuan, P. He, Z. Xi, X. Li, Y. Li, H. Zhong, L. Fan, and S. Yang, Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays, Nano Res., 12, 1669-1674 (2019). https://doi.org/10.1007/s12274-019-2420-x
  19. S. Zhao, L. Yan, M. Cao, L. Huang, K. Yang, S. Wu, M. Lan, G. Niu, and W. Zhang, Near-infrared light-triggered lysosometargetable carbon dots for photothermal therapy of cancer, ACS Appl. Mater. Interfaces, 13, 53610-53617 (2021). https://doi.org/10.1021/acsami.1c15926
  20. C. Ji, Q. Han, Y. Zhou, J. Wu, W. Shi, L. Gao, R. M. Leblanc, and Z. Peng, Phenylenediamine-derived near infrared carbon dots: The kilogram-scale preparation, formation process, photoluminescence tuning mechanism and application as red phosphors, Carbon, 192, 198-208 (2022). https://doi.org/10.1016/j.carbon.2022.02.054
  21. S. Pawar, S. Kaja, and A. Nag, Red-emitting carbon dots as a dual sensor for In3+ and Pd2+ in water, ACS Omega, 5, 8362-8372 (2020). https://doi.org/10.1021/acsomega.0c00883
  22. M. Lan, S. Zhao, Z. Zhang, L. Yan, L. Guo, G. Niu, J. Zhang, J. Zhao, H. Zhang, P. Wang, G. Zhu, C.-S. Lee, and W. Zhang, Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy, Nano Res., 10, 3113-3123 (2017). https://doi.org/10.1007/s12274-017-1528-0
  23. K. Hola, M. Sudolska, S. Kalytchuk, D. Nachtigallova, A. L. Rogach, M. Otyepka, and R. Zboril, Graphitic nitrogen triggers red fluorescence in carbon dots, ACS Nano, 11, 12402-12410 (2017). https://doi.org/10.1021/acsnano.7b06399
  24. Q. Zhang, R. Wang, B. Feng, X. Zhong, and K. Ostrikov, Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation, Nat. Commun., 12, 6856 (2021). https://doi.org/10.1038/s41467-021-27071-4
  25. Z. Yed, R. Tang, H. Wu, B. Wang, M. Tan, and J. Yuan, Preparation of europium complex-conjugated carbon dots for ratiometric fluorescence detection of copper(II) ions, New J. Chem., 38, 5720-5726 (2021).
  26. E. Liu, T. Liang, E. V. Ushakova, B. Wang, B. Zhang, H. Zhou, G. Xing, C. Wang, Z. Tang, S. Qu, and A. L. Rogach, Enhanced near-infrared emission from carbon dots by surface deprotonation, J. Phys. Chem. Lett., 12, 604-611 (2021). https://doi.org/10.1021/acs.jpclett.0c03383
  27. D. Li, P. Jing, L. Sun, Y. An, X. Shan, X. Lu, D. Zhou, D. Han, D. Shen, Y. Zhai, S. Qu, R. Zboril, and A. L. Rogach, Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots, Adv. Mater., 30, 1705913 (2018). https://doi.org/10.1002/adma.201705913
  28. L. Wang, W. Li, L. Yin, Y. Liu, H. Guo, J. Lai, Y. Han, G. Li, M. Li, J. Zhang, R. Vajtai, P. M. Ajayan, and M. Wu, Full-color fluorescent carbon quantum dots, Sci. Adv., 6, eabb6772 (2020). https://doi.org/10.1126/sciadv.abb6772
  29. Y. Jiao, X. Gong, H. Han, Y. Gao, W. Lu, Y. Liu, M. Xian, S. Shuang, and C. Dong, Facile synthesis of orange fluorescence carbon dots with excitation independent emission for pH sensing and cellular imaging, Anal. Chim Acta, 1042, 125-132 (2018). https://doi.org/10.1016/j.aca.2018.08.044
  30. S. K. Bajapai, A. D'Souza, B. Suahil, Blue light-emitting carbon dots (CDs) from a milk protein and their interaction with Spinacia oleracea leaf cells, Int. Nano Lett., 9, 203-212 (2019). https://doi.org/10.1007/s40089-019-0271-9
  31. B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi, and I. Visoly-Fisher, Role of oxygen functional groups in reduced graphene oxide for lubrication, Sci. Rep., 7, 45030 (2017). https://doi.org/10.1038/srep45030
  32. A. Pal, G. Natu, K. Ahmad, and A. Chattopadhyay, Phosphorous induced crystallinity in carbon dots for solar light assisted seawater desalination, J. Mater. Chem. A, 6, 4111-4118 (2018). https://doi.org/10.1039/C7TA10224K
  33. V. Guerra, C. Wan, and T. McNally, Nucleation of the β-polymorph in composites of poly(propylene) and graphene nanoplatelets, J. Compos. Sci., 3, 38 (2019). https://doi.org/10.3390/jcs3020038
  34. X, Wei, S. Mei, D. Yang, G. Zhang, F. Xie, W. Zhang, and R. Guo, The effect of solvent polarity on emission properties of carbon dots and their uses in colorimetric sensors for water and humidity, Nanoscale Res. Lett., 14, 172 (2019). https://doi.org/10.1186/s11671-019-3008-9
  35. D. Chao, W. Lyu, Y. Liu, L. Zhou, Q. Zhang, R. Deng, and H. Zhang, Solvent-dependent carbon dots and their applications in the detection of water in organic solvents, J. Mater. Chem. C, 6, 7527-7532 (2018). https://doi.org/10.1039/C8TC02184H
  36. H. J. Lee, J. Jana, Y-L. T. Ngo, L. L. Wang, J. S. Chung, and S. H. Hur, The effect of solvent polarity on emission properties of carbon dots and their uses in colorimetric sensors for water and humidity, Mater. Res. Bull, 119, 110564 (2019). https://doi.org/10.1016/j.materresbull.2019.110564