DOI QR코드

DOI QR Code

전 고체 고분자 전지용 Oligo(EDOT)/PVdF 블렌드 전해질

Oligo(EDOT)/PVdF Blend Electrolyte for All Solid Polymer Battery

  • 김민수 (부산대학교 응용화학공학부) ;
  • 권현주 (부산대학교 응용화학공학부) ;
  • 조남주 (부산대학교 응용화학공학부)
  • Kim, Min Su (School of Chemical Engineering, Pusan National University) ;
  • Gwon, Hyeon-Ju (School of Chemical Engineering, Pusan National University) ;
  • Jo, Nam-Ju (School of Chemical Engineering, Pusan National University)
  • 투고 : 2022.04.15
  • 심사 : 2022.05.20
  • 발행 : 2022.06.10

초록

본 연구에서는 동종의 thiophene계 고분자를 전극과 전해질 재료로 적용하여 고체 전해질과 전극이 맞닿은 계면 저항을 감소시킨 고분자 전지를 제작하였다. 먼저 poly(3,4-ethylenedioxy thiophene) (PEDOT) 기반 전극과의 계면 저항을 최소화하기 위해 3,4-ethylenedioxy thiophene (EDOT) 올리고머[oligo(EDOT)]를 고체 전해질에 도입하고, oligo(EDOT)의 부족한 리튬 염 해리능력을 향상시키기 위해서 poly(vinylidene fluoride) (PVdF)와 블렌딩한 oligo(EDOT)/PVdF 블렌드 기반 고체 전해질을 제작하였다. 그 결과, oligo(EDOT)에 PVdF를 도입함으로써 고체 고분자 전해질의 이온 전도도는 증가하였다. 또 PEDOT 기반 전극과 oligo(EDOT)/PVdF 블렌드 기반 고체 전해질로 이루어진 전 고체 고분자 전지의 전기화학적 특성을 평가한 결과, 동종의 thiophene계 고분자 물질을 전극과 전해질에 도입함으로써 계면 저항이 크게 감소함을 확인하였다.

In this study, we intend to fabricate an all solid polymer battery with a reduced interfacial resistance between the solid electrolyte and the electrode by applying thiophene based polymers as both electrode and electrolyte materials. In order to minimize the interfacial resistance with the poly(3,4-ethylenedioxy thiophene) (PEDOT) based electrode, 3,4-ethylenedioxy thiophene (EDOT) oligomer was introduced into the solid electrolyte. Also, to improve the lithium salt dissociation ability of the EDOT oligomer [oligo(EDOT)] electrolyte, it was blended with poly(vinylidene fluoride) (PVdF). As a result, the ionic conductivity of the solid polymer electrolyte increased by introducing PVdF into the oligo (EDOT). From the result of evaluating the electrochemical properties of an all solid polymer battery, the interfacial resistance significantly decreased by introducing a thiophene based polymer to the electrode and electrolyte.

키워드

과제정보

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었으며, 이에 감사드립니다.

참고문헌

  1. J. M. Kim, J. M. Oh, J. Y. Kim, Y. G. Lee, and K. M. Kim, Recent progress and perspectives of solid electrolytes for lithium rechargeable batteries, J. Korean Electrochem. Soc., 22, 87-103 (2019). https://doi.org/10.5229/JKES.2019.22.3.87
  2. H. J. Shin, J. T. Kim, H. H. Lee, and H. K. Jeong, High-performance solid electrolyte material technology development trend for all-solid-state batteries, Trends in Metals & Materials Engineering, 33, 38-53 (2020).
  3. K. S. Kim, Solid electrolyte and all-solid-state battery R&D trends to improve the safety of high-energy secondary batteries, Electrical & Electronic Materials, 30, 20-31 (2017).
  4. D. Y. Joo, Current status and development tasks of domestic secondary battery industry KIET industrial economy, 3, 20-31 (2018).
  5. Y. J. Lee, All-solid-state lithium secondary battery development trend and outlook, KDB Monthly Bulletin, 780, 16-34 (2020).
  6. J. S. Kim, D. W. Lee, and J. H. Lee, Next-generation battery, Kiwoom Industry Analysis, 4, 3-56 (2019).
  7. Y. G. Kang and C. J. Lee, Solid polymer electrolyte for lithium-polymer secondary battery, Polymer Science and Technology, 14, 396-406 (2003).
  8. H. S. Kim, Post lithium-ion battery technology for next generation xEV, Auto Journal, 42, 35 (2020).
  9. F. Tran-Van, S. Garreau, G. Louarn, G. Froyer, and C. Chevrot, Fully undoped and soluble oligo(3,4-ehtylenedioxythiophene)s: Spectroscopic study and electrochemical characterization, J. Mater. Chem., 11, 1378-1382 (2001). https://doi.org/10.1039/b100033k
  10. W. Liu, X. K. Zhang, F. Wu, and Y. Xiang, A study on PVdF-HFP gel polymer electrolyte for lithium-ion batteries, IOP Conf. Ser.: Mater. Sci. Eng., May 23-25, Guangzhou, China (2017).
  11. P. Ball, H. Fullmann, and W. Heitz, Carbonates and polycarbonates from urea and alcohol, Angew. Chem. Int. Ed., 19, 718-720 (1980). https://doi.org/10.1002/anie.198007181
  12. A. R. Han, J. S. Shin, S. J. Park, and S. Kim, Preparation and electrochemical behaviors of polymer electrolyte based on PEO/PMMA containing Li ion, Korean Chem. Eng. Res., 47, 476-480 (2009).
  13. Y. J. Lee, Y. K. Jo, H. Park, H. H. Chun, and N. J. Jo, Solvent effect on ion hopping of solid polymer electrolyte, Mater. Sci. Forum, 544-545, 1049-1052 (2007). https://doi.org/10.4028/www.scientific.net/msf.544-545.1049
  14. M. K. Kim, Y. J. Lee, and N. J. Jo, The effect of HSAB principle on electrochemical properties of polymer-in-salt electrolytes with aliphatic polymer, Surf. Rev. Lett., 17, 63-68 (2010). https://doi.org/10.1142/S0218625X10013825
  15. A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, US Patent, 5,296,318 (1994).
  16. J. H. Shin and S. Passerini, PEO-LiN(SO2CF2CF3)2 polymer electrolytes, J. Electrochem. Soc., 151, A238-A245 (2004). https://doi.org/10.1149/1.1636737
  17. Z. Zhang and M. Wan, Composite films of nanostructured polyaniline with poly(vinyl alcohol), Synth. Met., 128, 83-89 (2002). https://doi.org/10.1016/S0379-6779(01)00669-5
  18. M. G. Han, S. K. Cho, S. G. Oh, and S. S. Im, Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution, Synth. Met., 126, 53-60 (2002). https://doi.org/10.1016/S0379-6779(01)00494-5
  19. S. K. No, K. H. Choi, J. W. Kwak, and W. S. Ryu, Preparation and application of poly(vinyl alcohol) having various molecular parameters, Polymer Science and Technology, 15, 4-11 (2004).
  20. C. Wu, S. Guo, L. Jia, S. Han, B. Chi, J. Pu, and L. Jian, Mechanistic insight into the individual ionic transportation in polymer electrolytes for use in dye-sensitized solar cell, RSC Adv., 3, 13968-13975 (2013). https://doi.org/10.1039/c3ra40309b
  21. H. Hwang, Electrochemical Analysis, 194-199, Freeacademy, Republic of Korea (2007).
  22. J. H. Lee, C. H. Park, M. S. Park, and J. H. Kim, Poly(vinyl alcohol)-based polymer electrolyte membrane for solid-state supercapacitor, Membr. J, 29, 30-36 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.30