DOI QR코드

DOI QR Code

How does the knowledge level affect the seismic retrofit cost? The case study of a RC building

  • Miano, Andrea (Department of Structures for Engineering and Architecture, University of Naples Federico II) ;
  • Chiumiento, Giovanni (Department of Structures for Engineering and Architecture, University of Naples Federico II) ;
  • Formisano, Antonio (Department of Structures for Engineering and Architecture, University of Naples Federico II) ;
  • Prota, Andrea (Department of Structures for Engineering and Architecture, University of Naples Federico II)
  • 투고 : 2020.10.17
  • 심사 : 2022.01.12
  • 발행 : 2022.06.10

초록

The retrofit of existing structures in high seismic zones is a crucial issue in the earthquake engineering field. The interest of the research community is particularly high for the structures that do not respect current seismic codes and present structural deficiencies such as poor detailing and lack of capacity design provisions. A reinforced concrete (RC) school building is used as case study to show the influence of different knowledge levels on the seismic retrofitting cost assessment. The safety assessment of the case study building highlights deficiencies under both vertical and seismic loads. By considering all the possible knowledge levels defined by the Italian such as by the European codes in order to derive the mechanical properties of the school building constitutive materials, the retrofit operations are designed to achieve different seismic safety thresholds. The retrofit structural costs are calculated and summed up to the costs for in-situ in tests. The paper shows how for the case study building the major costs spent for a large number of in-situ tests allows to save a consistent amount of money for retrofit operations. The hypothesis of demolition and reconstruction of the building is also compared in terms of costs with all the analyzed retrofit options.

키워드

참고문헌

  1. Aversa, S., Da Porto, F., Di Pasquale, G., Dolce, M., Foti, S., Griffini, L., ... & Montella, G. (2012), Linee Guida Per Modalita Di Indagine Sulle Strutture E Sui Terreni Per I Progetti Di Riparazione, Miglioramento E Ricostruzione Di Edifici Inagibili, Doppiavoce Editor, Napoli, Italy.
  2. Bertolesi, E., Fabbrocino, F., Formisano, A., Grande, E. and Milani, G. (2017), "FRP-strengthening of curved masonry structures: Local bond behavior and global response", Key Eng. Mater., 747, 134-141. https://doi.org/10.4028/www.scientific.net/KEM.747.134.
  3. Bungey, J.H. and Grantham, M.G. (2014), Testing of Concrete in Structures, Crc Press, London.
  4. Calvi, G.M. (2013), "Choices and criteria for seismic strengthening", J Earthq. Eng., 17(6), 769-802. https://doi.org/10.1080/13632469.2013.781556.
  5. CDS Win (2018), Computer Design of Structures, Scientific and Technical Software.
  6. Commentary (2019), Supplemento Ordinario alla Gazzetta Ufficiale, n. 42 del 20 Febbraio 2018, Ministero delle Infrastrutture e dei Trasporti, DM 17 Gennaio 2018 "Aggiornamento delle Norme tecniche per le costruzioni".
  7. Cosenza, E., Del Vecchio, C., Di Ludovico, M., Dolce, M., Moroni, C., Prota, A. and Renzi, E. (2018), "The Italian guidelines for seismic risk classification of constructions: Technical principles and validation", Bull. Earthq. Eng., 16(12), 5905-5935. https://doi.org/10.1007/s10518-018-0431-8.
  8. DelVecchio, C., Di Ludovico, M. and Prota, A. (2019), "Repair costs of RC building components from acrual data analysis to calibrated consequence functions", Earthq. Spectra, 36(1), 353-377. https://doi.org/10.1177/8755293019878194.
  9. Di Ludovico, M., Balsamo, A., Prota, A. and Manfredi, G. (2008), "Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure", Struct. Eng. Mech., 28(6), 727-748. https://doi.org/10.12989/sem.2008.28.6.727.
  10. Eurocode 8 (2005), Eurocode 8: Design of Structures for Earthquake Resistance, Part 3: Assessment and Retrofitting of Buildings, CEN, Brussels, Belgium.
  11. Fajfar, P. (1999), "Capacity spectrum method based on inelastic demand spectra", Earthq. Eng. Struct. Dyn., 28(9), 979-994. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9%3C979::AID-EQE850%3E3.0.CO;2-1.
  12. Fajfar, P. (2000), "A nonlinear analysis method for performancebased seismic design", Earthq. Spectra, 16(3), 573-592. https://doi.org/10.1193/1.1586128.
  13. Formisano, A., Castaldo, C. and Chiumiento, G. (2017), "Optimal seismic upgrading of a reinforced concrete school building with metal-based devices using an efficient multi-criteria decisionmaking method", Struct. Infrastr. Eng., 13(11), 1373-1389. https://doi.org/10.1080/15732479.2016.1268174.
  14. Formisano, A., De Matteis, G., Panico, S. and Mazzolani, F.M. (2008) "Seismic upgrading of existing RC buildings by slender steel shear panels: A full-scale experimental investigation", Adv. Steel Constr., 4(1), 26-45. https://doi.org/10.18057/IJASC.2008.4.1.3.
  15. Formisano, A., Iaquinandi, A. and Mazzolani, F.M. (2015), "Seismic retrofitting by FRP of a school building damaged by Emilia-Romagna earthquake", Key Eng. Mater., 624, 106-113. https://doi.org/10.4203/ccp.106.83.
  16. Frascadore, R., Di Ludovico, M., Prota, A., Verderame, G.M., Manfredi, G., Dolce, M. and Cosenza, E. (2015), "Local strengthening of reinforced concrete structures as a strategy for seismic risk mitigation at regional scale", Earthq. Spectra, 31(2), 1083-1102. https://doi.org/10.1193/122912EQS361M.
  17. Hopkins, D.C. and Stuart, G. (2003), "Strengthening existing New Zealand buildings for earthquake: An analysis of cost benefit using annual probabilities", 2003 Pacific Conference on Earthquake Engineering, Christchurch, New Zealand, February.
  18. Jafarzadeh, R., Ingham, J.M., Walsh, K.Q., Hassani, N. and Ghodrati Amiri, G.R. (2015), "Using statistical regression analysis to establish construction cost models for seismic retrofit of confined masonry buildings", J. Constr. Eng. Manage., 141(5), 04014098. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000968
  19. Jalayer, F., Ebrahimian, H. and Miano, A. (2020), "Intensity-based demand and capacity factor design: A visual format for safety checking", Earthq. Spectra, 36(4), 1952-1975. https://doi.org/10.1177/8755293020919451.
  20. Mele, A., Miano, A., Di Martire, D., Infante D, Prota, A. and Ramondini, M. (2021), "Seismic assessment of an existing RC building affected by slow-moving landslides induced displacements monitored by remote sensing technique", Proceedings of 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, June.
  21. Miano, A. and Chiumiento, G. (2019) "Case study on seismic retrofit and cost assessment for a school building", Struct. Eng. Mech., 73(1), 53-64. https://doi.org/10.12989/sem.2020.73.1.053.
  22. Miano, A., Chiumiento, G., Formisano, A. and Prota A. (2020a), "Influence of different knowledge levels on the seismic retrofit cost assessment of a RC school building", AIP Conf. Proc., 2293(1), 380014. https://doi.org/10.1063/5.0026442.
  23. Miano, A., de Silva, D., Compagnone, A. and Chiumiento, G. (2020b), "Probabilistic seismic and fire assessment of an existing reinforced concrete building and retrofit design", Struct. Eng. Mech., 74(4), 481-494. https://doi.org/10.12989/sem.2020.74.4.481.
  24. Miano, A., Sezen, H., Jalayer, F. and Prota A. (2018), "Performance based assessment and retrofit of non ductile existing reinforced concrete structures", Proceedings of the Structures Conference 2018, Fort Worth, Texas, April.
  25. Miano, A., Sezen, H., Jalayer, F. and Prota, A. (2019), "Performance based assessment methodology for retrofit of buildings", ASCE J. Struct. Eng., 145(12), 04019144. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002419.
  26. Moehle, J.P. (2000), "State of research on seismic retrofit of concrete building structures in the US", US-Japan Symposium and Workshop on Seismic Retrofit of Concrete Structures.
  27. Mosoarca, M., Apostol, I., Keller, A. and Formisano, A. (2017), "Consolidation methods of Romanian historical building with composite materials", Key Eng. Mater., 747, 406-413. https://doi.org/10.4028/www.scientific.net/KEM.747.406.
  28. Nasrazadani, H., Mahsuli, M., Talebiyan, H. and Kashani, H. (2017), "Probabilistic modeling framework for prediction of seismic retrofit cost of buildings", J. Constr. Eng. Manage., 143(8), 04017055. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001354.
  29. NTC (2018), D.M. Infrastrutture Trasporti 17 Gennaio 2018, Norme Tecniche Per Le Costruzioni, G.U. 20 Febbraio 2018 n. 42 - Suppl. Ord., Rome, Italy.
  30. Regional Price (2018), "Regional price list for Campania", Italy, D.Lgs 18 Aprile 2016, n. 50 - L.R. 27 Febbraio 2007, n. 3, Prezzario Regionale dei Lavori Pubblici Anno 2018.
  31. RILEM (1993), Recommendations for In-Situ Concrete Strength Determination by Combined Non-Destructive Methods, Compendium of RILEM, Technical Recommendations, E&FN Spon, London.
  32. Saribiyik, A. and Caglar, N. (2016), "Flexural strengthening of RC beams with low-strength concrete using GFRP and CFRP", Struct. Eng. Mech., 58(5), 825-845. https://doi.org/10.12989/sem.2016.58.5.825.
  33. Table of the Costs (2017), "Tabella dei costi di costruzione e ristrutturazione/restauro di manufatti edilizi", Delibera di adozione del Consiglio dell'Ordine degli Ingegneri della Provincia di Grosseto in data 27 Febbraio 2017.
  34. Verderame, G.M., Stella, A. and Cosenza, E. (2001), "Le proprieta meccaniche degli acciai impiegati nelle strutture in ca realizzate negli anni'60", X Convegno nazionale "L'Ingegneria Sismica in Italia", Potenza-Matera.
  35. Vidic, T., Fajfar, P. and Fischinger, M. (1994), "Consistent inelastic design spectra: strength and displacement", Earthq. Eng. Struct. Dyn., 23, 507-521. https://doi.org/10.1002/eqe.4290230504.
  36. Weng, D.G., Zhang, C., Lu, X.L., Zeng, S. and Zhang, S.M. (2012), "A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers", Struct. Eng. Mech., 44(5), 611-631. https://doi.org/10.12989/sem.2012.44.5.611.