Acknowledgement
This work was supported by the Korea Creative Contents Agency funded by the Korean Government (R2020040102, Technology development of intelligent fashion demand prediction and market analysis to improve fashion design for small business owners).
References
- Aaker, J. L. (1997). Dimensions of brand personality. Journal of Marketing Research, 34(3), 347-356. doi:10.1177/002224379703400304
- Abu-Bader, S. H. (2021). Using statistical methods in social science research: With a complete SPSS guide (3rd ed.). New York, NY: Oxford University Press.
- Ahmed, O. (2021, June 7). Balenciaga just staged a deep-fake SS22 fashion show. i-D. Retrieved from https://i-d.vice.com/en_uk/article/akg3bb/balenciaga-ss22-show-review
- Aldamiz-echevarria, G. (2018, January 30). How we grew from 0 to 4 million women on our fashion app, with a vertical machine learning approach. Medium. Retrieved from https://medium.com/hackernoon/how-we-grew-from-0-to-4-million-women-on-our-fashion-app-with-a-vertical-machine-learning-approach-f8b7fc0a89d7
- An, H., Kwon, S., & Park, M. (2019). A case study on the recommendation services for customized fashion styles based on artificial intelligence. Journal of the Korean Society of Clothing and Textiles, 43(3), 349-360. doi:10.5850/JKSCT.2019.43.3.349
- Barron, L. (2021). The return of the celebrity fashion muse: Brand endorsement, creative inspiration and celebrity-influenced design communication. Fashion Theory, 25(6), 757-776. doi:10.1080/1362704X.2019.1656946
- Carpenter, J. M., Moore, M., & Fairhurst, A. E. (2005). Consumer shopping value for retail brands. Journal of Fashion Marketing and Management, 9(1), 43-53. doi:10.1108/13612020510586398
- Chae, J. M., & Kim, E. H. (2020). Sales pattern and related product attributes of T-shirts. Journal of the Korean Society of Clothing and Textiles, 44(6), 1053-1069. doi:10.5850/JKSCT.2020.44.6.1053
- Chakraborty, S., Hoque, S. M. A., & Kabir, S. M. F. (2020). Predicting fashion trend using runway images: application of logistic regression in trend forecasting. International Journal of Fashion Design, Technology and Education, 13(3), 376-386. doi:10.1080/17543266.2020.1829096
- Cheerla, A., & Gevaert, O. (2019). Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics, 35(14), i446-i454. doi:10.1093/bioinformatics/btz342
- Chen, H., Gallagher, A., & Girod, B. (2012). Describing clothing by semantic attributes. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, & C. Schmid (Eds.), Computer vision - ECCV 2012 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part III (pp. 609-623). Berlin and Heidelberg: Springer. doi:10.1007/978-3-642-33712-3_44
- Cheng, C.-I., & Liu, D. S.-M. (2008). An intelligent clothes search system based on fashion styles. Proceedings of 2008 International Conference on Machine Learning and Cybernetics, 3, China, 1592-1597. doi:10.1109/ICMLC.2008.4620660
- Cho, E., & Fiore, A. M. (2015). Conceptualization of a holistic brand image measure for fashion-related brands. Journal of Consumer Marketing, 32(4), 255-265. doi:10.1108/JCM07-2014-1063
- Choi, S.-L., Do, W.-H., & Lee, M.-S. (2018). Analysis of the constructional components of Chanel jacket design. Fashion & Textile Research Journal, 20(3), 266-278. doi:10.5805/SFTI.2018.20.3.266
- Clarke, D. W., Perry, P., & Denson, H. (2012). The sensory retail environment of small fashion boutiques. Journal of Fashion Marketing and Management, 16(4), 492-510. doi:10.1108/13612021211265872
- Cooper, G. (2019, October 3). New vision technologies for real-world applications. Semiconductor Engineering. Retrieved from https://semiengineering.com/new-vision-technologiesfor-real-world-applications/
- Copeland, L., Ciampaglia, G. L., & Zhao, L. (2019). Fashion informatics and the network of fashion knockoffs. First Monday, 24(12). doi:10.5210/fm.v24i12.9703
- DuBreuil, M., & Lu, S. (2020). Traditional vs. big-data fashion trend forecasting: an examination using WGSN and EDITED. International Journal of Fashion Design, Technology and Education, 13(1), 68-77. doi:10.1080/17543266.2020.1732482
- Escalas, J. E., & Bettman, J. R. (2005). Self-construal, reference groups, and brand meaning. Journal of Consumer Research, 32(3), 378-389. doi:10.1086/497549
- Eshwar, S. G., Gautham Ganesh Prabhu, J., Rishikesh, A. V., Charan, N. A., & Umadevi, V. (2016). Apparel classification using convolutional neural networks. Proceedings of 2016 International Conference on ICT in Business Industry & Government (ICTBIG), India, 1-5. doi:10.1109/ICTBIG.2016.7892641
- Fionda, A. M., & Moore, C. M. (2009). The anatomy of the luxury fashion brand. Journal of Brand Management, 16(5-6), 347-363. doi:10.1057/bm.2008.45
- Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In D. E. Losada & J. M. Fernandez-Luna (Eds), Advances in information retrieval: 27th European Conference on IR Research, ECIR 2005, Santiago de Compostela, Spain, March 21-23, 2005, Proceedings (pp. 345-359). Berlin and Heidelberg: Springer. doi:10.1007/978-3-540-31865-1_25
- Hines, T., & Bruce, M. (2007). Fashion marketing: Contemporary issues (2nd ed.). Oxford and Burlington: Butterworth-Heinemann..
- Hong, T., Kim, J., & Shin, J. (2016). A user sentiment classification using Instagram image and text analysis. Smart Media Journal, 5(1), 61-68.
- Israeli, A., & Avery, J. (2018, March 19). Predicting consumer tastes with big data at Gap. Harvard Business School. Retrieved from https://mycourses.aalto.fi/pluginfile.php/1458535/mod_folder/intro/CASE%20GAP%20Predicting%20consumer%20tastes.pdf
- Jia, M., Shi, M., Sirotenko, M., Cui, Y., Hariharan, B., Cardie, C., & Belongie, S. (2019, June 17). The fashionpedia ontology and fashion segmentation dataset. CVPR Workshop on Fine-Grained Visual Categorization Workshops (FGVC), Long Beach, CA. Retrieved from https://vision.cornell.edu/se3/wp-content/uploads/2019/06/Fashionpedia_TechReport.pdf
- Jin, L., & Liang, H. (2017). Deep learning for underwater image recognition in small sample size situations. Proceedings of OCEANS 2017 - Aberdeen, UK, 1-4. doi:10.1109/OCEANSE.2017.8084645
- Jung, J. H. (2021, September 15). "인공지능, 스니커즈를 디자인하다".… AI SNEAKERS 'AIKERS' 선보여 ["AI designs sneakers", showed AI SNEAKERS 'AIKERS']. Biz World. Retrieved from https://www.bizwnews.com/news/articleView.html?idxno=27594
- Keller, K. L. (2003). Understanding brands, branding and brand equity. Interactive Marketing, 5(1), 7-20. doi:10.1057/palgrave.im.4340213
- Keller, K. L., & Swaminathan, V. (2020). Strategic brand management: Building, measuring, and managing brand equity (5th ed.). Harlow: Pearson.
- Kiapour, M. H., Yamaguchi, K., Berg, A. C., & Berg, T. L. (2014). Hipster wars: Discovring elements of fashion styles. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer vision - ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I (pp. 472-488). Cham: Springer. doi:10.1007/978-3-319-10590-1_31
- Kim, H.-S., & Cho, S.-B. (2000). Application of interactive genetic algorithms to fashion design. Engineering Applications of Artificial Intelligence, 13(6), 635-644. doi:10.1016/S0952-1976(00)00045-2
- Kim, H., Jang, S., Lee, Y., Seol, J., Kim, S., & Lee, S.-g. (2021). 딥러닝을 활용한 패션브랜드 감성 학습 [Deep learning for classification of fashion brand sensibility]. Proceedings of the Korean Society of Clothing and Textiles, Spring Conference, Korea, 128.
- Kim, Y. J. (2021, April 1). AI가 옷디자인 한다…ETRI 'AI 디자이너, 모델생성기술' 개발 [AI designs clothes…ETRI Development of 'AI designer, model generation technology']. Electronic Time Internet. Retrieved from https://m.etnews.com/20210401000112?obj=Tzo4OiJzdGRDbGFzcyI6Mjp7czo3OiJyZWZlcmVyIjtOO3M6NzoiZm9yd2FyZCI7czoxMzoid2ViIHRvIG1vYmlsZSI7fQ%3D%3D
- Kingma, D. P., & Ba, J. L. (2015, May 7-9). Adam: A method for stochastic optimization. 3rd International Conference for Learning Representations, San Diego, CA. Retrieved from https://click.endnote.com/viewer?doi=arxiv%3A1412.6980&token=WzMwMDE1OTIsImFyeGl2OjE0MTIuNjk4MCJd.qJIHf8g_nDAIDH15NLTHf7swjWY
- Ko, E., Lee, M. A., & Lee, M. (2012). Fashion brand & communication. Paju: Kyomunsa.
- Kwon, S., Choi, Y., Kim, S., & An, H. (2020). Fashion style classification of SNS images using convolutional neural networks. Proceedings of 2020 International Conference on Clothing and Textiles (ICCT), Korea, 40-41.
- Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40:e253. doi:10.1017/S0140525X16001837
- Lee, H., Seol, J., & Lee, S.-g. (2017, August 14). Style2Vec: Representation learning for fashion items from style sets. Cornell University. Retrieved from https://arxiv.org/abs/1708.04014
- Lee, I., & Shin, Y. J. (2020). Machine learning for enterprises: Applications, algorithm selection, and challenges. Business Horizons, 63(2), 157-170. doi:10.1016/j.bushor.2019.10.005
- Lee, K. M. (2018). Artificial intelligence. Paju: Life and Power Press.
- Lee, S., Kang, J. H., Lee, H. Joo, T. W., Oh, S., Park, S., & Kim, S. B. (2014). Prediction of product life cycle using data mining algorithms : A case study of clothing industry. Journal of the Korean Institute of Industrial Engineers, 40(3), 291-298. doi:10.7232/JKIIE.2014.40.3.291
- Liang, X., Liu, S., Shen, X., Yang, J., Liu, L., Dong, J., ... Yan, S. (2015). Deep human parsing with active template regression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(12), 2402-2414. doi:10.1109/TPAMI.2015.2408360
- Lin, Y., & Yang, H. (2019, July 16). Predicting next-season designs on high fashion runway. Cornell University. Retrieved from https://arxiv.org/abs/1907.07161
- Liu, F., Li, J., Mizerski, D., & Soh, H. (2012). Self-congruity, brand attitude, and brand loyalty: a study on luxury brands. European Journal of Marketing, 46(7/8), 922-937. doi:10.1108/03090561211230098
- Liu, Z., Luo, P., Qiu, S., Wang, X., & Tang, X. (2016). DeepFashion: Powering robust clothes recognition and retrieval with rich annotations. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), USA, 1096-1104. doi:10.1109/CVPR.2016.124
- Ma, Y., Jia, J., Zhou, S., Fu, J., Liu, Y., & Tong, Z. (2017). Towards better understanding the clothing fashion styles: A multimodal deep learning approach. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 31(1), USA, 38-44.
- MarketsandMarketsTM. (2019, October). AI in fashion market by component (solutions and services), application(product recommendation, product search & discovery, and CRM), deployment mode, category, (apparel, accessories, and beauty & cosmetics), end user, and region - global forecast to 2024. MarketsandMarkets. Retrieved from https://www.marketsandmarkets.com/Market-Reports/ai-in-fashion-market-144448991.html
- McCracken, G. D. (1985). The trickle-down theory rehabilitated. In M. R. Solomon (Ed.), The psychology of fashion (pp. 39-54). Lexington, MA: Lexington Books.
- McQuarrie, E. F., & Phillips, B. J. (2008). It's not your father's magazine ad: Magnitude and direction of recent changes in advertising style. Journal of Advertising, 37(3), 95-106. doi:10.2753/JOA0091-3367370307
- Mello, P., Storari, S., & Valli, B. (2008). A knowledge-based system for fashion trend forecasting. In N. T. Nguyen, L. Borzemski, A. Grzech, & M. Ali (Eds.), New frontiers in applied artificial intelligence: 21st International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2008 Wroclaw, Poland, June 18-20, 2008 Proceedings (pp. 425-434). Berlin and Heidelberg: Springer. doi:10.1007/978-3-540-69052-8_45
- Park, S., Shin, M., Ham, S., Choe, S., & Kang, Y. (2019). Study on fashion image retrieval methods for efficient fashion visual search. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPR), USA, 316-319. doi:10.1109/CVPRW.2019.00042
- Phillips, B. J., McQuarrie, E. F., & Griffin, W. G. (2014). How visual brand identity shapes consumer response. Psychology & Marketing, 31(3), 225-236. doi:10.1002/mar.20689
- Ramachandran, P., Zoph, B., & Le, Q. V. (2017, October 27). Swish: A self-gated activation function. Cornell University. Retrieved from https://arxiv.org/abs/1710.05941v1
- Rashid, K. M., & Louis, J. (2019). Times-series data augmentation and deep learning for construction equipment activity recognition. Advanced Engineering Informatics, 47:100944. doi:10.1016/j.aei.2019.100944
- Ross, J., & Harradine, R. (2011). Fashion value brands: the relationship between identity and image. Journal of Fashion Marketing and Management, 15(3), 306-325. doi:10.1108/13612021111151914
- Sadeh, G., Fritz, L., Shalev, G., & Oks, E. (2019, June 15). Joint visual-textual embedding for multimodal style search. Cornell University. Retrieved from https://arxiv.org/abs/1906.06620
- Schneider, S., Greenberg, S., Taylor, G. W., & Kremer, S. C. (2020). Three critical factors affecting automated image species recognition performance for camera traps. Ecology and Evolution, 10(7), 3503-3517. doi:10.1002/ece3.6147
- Schwab, K. (2018, August 22). This AI designs Balenciaga better than Balenciaga. Fast Company. Retrieved from https://www.fastcompany.com/90223486/this-ai-designs-balencia ga-better-than-balenciaga
- Seo, Y.,. & Shin, K.-s. (2018). Business application of convolutional neural networks for apparel classification using runway image. Journal of Intelligence and Information Systems, 24(3), 1-19. doi:10.13088/jiis.2018.24.3.001
- Standish, J., & Ganapathy, V. (2018, December 27). Think tank: How AI can power the future of fashion. WWD. Retrieved from https://wwd.com/business-news/business-features/jill-standish-think-tank-1202941433/
- Svendsen, L. (2006). Fashion: A philosophy (J. Irons, Trans). London: Reaktion Books. (Original work published 2004)
- Takagi, M., Simo-Serra, E., Iizuka, S., & Ishikawa, H. (2017). What makes a style: Experimental analysis of fashion prediction. Proceedings of 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Italy, 2247-2253. doi:10.1109/ICCVW.2017.263
- Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning, USA, 6105-6114.
- Taste graphs will transform fashion - Fashion Taste API. (2019, April 10). Chicisimo. Retrieved from https://blog.chicisimo.com/2019/04/10/taste-graphs-fashion/
- Teo, M. (2018, October 23). How Coco Chanel revolutionised women's fashion with just a jacket. Lifestyle Asia. Retrieved from https://www.lifestyleasia.com/sg/style/fashion/how-coco-chanel-revolutionised-womens-fashion-with-just-a-jacket/
- Tokumaru, M., Muranaka, N., & Imanishi, S. (2003). Virtual Stylist project - examination of adapting clothing search system to user's subjectivity with interactive genetic algorithms. Proceedings of The 2003 Congress on Evolutionary Computation '03, 2, Australia, 1036-1043. doi:10.1109/CEC.2003.1299782
- Wang, N., & Ai, H. (2011). Who Blocks Who: Simultaneous clothing segmentation for grouping images. Proceedings of 2011 International Conference on Computer Vision, Spain, 1535-1542. doi:10.1109/ICCV.2011.6126412
- Yun, S. Y., Kim, S., & Park, C. K. (2009). Development of an expert system for optimum fusible interlining. Journal of the Korean Society for Clothing Industry, 11(4), 648-660.
- Zhang, L., Hu, C., Chen, Q., Chen, Y., & Shi, Y. (2012). Domain knowledge based personalized recommendation model and its application in cross-selling. Procedia Computer Science, 9, 1314-1323. doi:10.1016/j.procs.2012.04.144