DOI QR코드

DOI QR Code

눈깜빡임 패턴에 기반한 십진 패스워드 입력 방법

An Input Method for Decimal Password Based on Eyeblink Patterns

  • Lee, Seung Ho (Department of Future Technology, Korea University of Technology and Education)
  • 투고 : 2022.03.06
  • 심사 : 2022.03.29
  • 발행 : 2022.05.31

초록

네자리 디지털 숫자를 입력하는 패스워드 방식이 신용카드 승인용 비밀번호, 디지털 도어락 개폐 비밀번호 등으로 널리 활용되고 있다. 하지만 이 패스워드 방식에서는 네자리의 숫자가 손가락 지문이나 버튼의 마모 등으로 쉽게 추측될 수 있어서 보안 상 안전하지 않다. 또한 장기화되는 코로나19 팬데믹으로 인해 인증에서 접촉 방식보다는 비접촉 방식이 점점 더 선호되고 있다. 본 논문에서는 카메라로 촬영된 얼굴의 눈깜빡임 패턴 분석에 기반한 패스워드 생성 방법을 제안한다. 제안 방법은 0부터 9까지(또는 9부터 0까지) 카운팅 되는 신호에 맞춰 행해진 일련의 눈깜빡임 동작을 분석하고 코드화하여 십진수 네자리를 생성한다. 제안 방법은 패스워드 노출 위험이 유발되는 키패드 입력이나 과장된 행동을 필요로 하지 않는다는 장점이 있다.

Password with a combination of 4-digit numbers has been widely adopted for various authentication systems (such as credit card authentication, digital door lock systems and so on). However, this system could not be safe because the 4-digit password can easily be stolen by predicting it from the fingermarks on the keypad or display screen. Furthermore, due to the prolonged COVID-19 pandemic, contactless method has been preferred over contact method in authentication. This paper suggests a new password input method based on eyeblink pattern analysis in video sequence. In the proposed method, when someone stands in front of a camera, the sequence of eyeblink motions is captured (according to counting signal from 0 to 9 or 9 to 0), analyzed and encoded, producing the desired 4-digit decimal numbers. One does not need to touch something like keypad or perform an exaggerated action, which can become a very important clue for intruders to predict the password.

키워드

과제정보

This paper was supported by Education and Research promotion program of KOREATECH in 2022.

참고문헌

  1. M. -K. Lee, "A User Interface for Safe Input of Personal Identification Number (PIN)," Journal of Korea Institute of Information Security and Cryptology, vol. 24, no. 3, pp. 27-35, Jun. 2014.
  2. W. -J. Kim, "Detection Technologies for Face Forgery and Alteration," Broadcasting and Media Magazine, vol. 25, no. 2, pp. 52-60, Apr. 2020.
  3. S. H. Lee, "Face Recognition Using Automatic Face Enrollment and Update for Access Control in Apartment Building Entrance," Journal of the Korea Institute of Information and Communication Engineering, vol. 25, no. 9, pp. 1152-1157, Sep. 2021. https://doi.org/10.6109/JKIICE.2021.25.9.1152
  4. K. Malik and B. Smolka, "Eye Blink Detection Using Local Binary Patterns," in 2014 International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, pp. 385-390, 2014.
  5. C. -H. Chu and Y. -K. Feng, "Study of Eye Blinking to Improve Face Recognition for Screen Unlock on Mobile Devices," Journal of Electrical Engineering and Technology, vol. 13, no. 2, pp. 953-960, Mar. 2018. https://doi.org/10.5370/JEET.2018.13.2.953
  6. H. Salehifar, P. Bayat, and M. A. Majd, "Eye Gesture Blink Password: A New Authentication System with High Memorable and Maximum Password Length," Multimedia Tools and Applications, vol. 78, no. 12, pp. 16861-16885, Jun. 2019. https://doi.org/10.1007/s11042-018-7043-9
  7. H. Kim, User Authentication Method, Device for Executing Same, And Recording Medium for Storing Same, Korea Patent (10-1494874), Feb. 2015.
  8. Haar-cascade classifier. (cited 2022, March 5) [Internet]. Available: https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
  9. OpenCV-Python. (cited 2022, March 5) [Internet]. Available: https://docs.opencv.org/4.3.0/
  10. S. H. Lee, "Deep Learning Based Face Mask Recognition for Access Control," Journal of the Korea Academia-Industrial Cooperation Society, vol. 21, no. 8, pp. 395-400, Aug. 2020. https://doi.org/10.5762/KAIS.2020.21.8.395