DOI QR코드

DOI QR Code

A study on the synergistic efficacy of Carthami flos in apoptosis of human gastric cancer by doxorubicin

독소루비신에 의한 인간 위암 세포사멸에서 홍화의 시너지 효능 연구

  • Kim, Byung Joo (Division of Longevity and Biofunctional Medicine School of Korean Medicine, Pusan National University)
  • 김병주 (부산대학교 한의학전문대학원 양생기능의학교실)
  • Received : 2022.04.18
  • Accepted : 2022.05.16
  • Published : 2022.05.31

Abstract

Objectives : This study is to investigate whether Carthami flos exhibits a synergistic effect on the apoptotic effect of doxorubicin on human gastric cancer cells. Methods : We used AGS, a human gastric cancer cell line. To investigate the apoptotic efficacy of doxorubicin and Carthami flos, MTT and CCK-8 methods were used. To confirm apoptosis, cell cycle and mitochondrial membrane potential changes were confirmed. To investigate the mechanism of apoptosis, the reactive oxygen species (ROS) experiment was performed. Results : 1. Doxorubicin or Carthami flos induced cell death in the human gastric cancer cell line AGS. 2. Carthami flos showed a synergistic effect of cell death by doxorubicin. 3. The cell cycle and mitochondrial membrane potential changes revealed that cell death was apoptosis. 4. Apoptosis was related to reactive oxygen species (ROS) generation. Conclusions : This result shows the anticancer synergistic effect of Carthami flos in gastric cancer cells, and is considered to be an important basis for the development of anticancer drugs for Carthami flos.

Keywords

Acknowledgement

이 성과는 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No. 2021R1I1A3042479).

References

  1. Lewandowska U, Gorlach S, Owczarek K, Hrabec E, Szewczyk K. Synergistic interactions between anticancer chemotherapeutics and phenolic compounds and anticancer synergy between polyphenols. Postepy Hig Med Dosw. 2014;68:528-540. https://doi.org/10.5604/17322693.1102278
  2. Yu RJ, Liu HB, Yu Y, Liang L, Xu R, Liang C, et al. Anticancer activities of proanthocyanidins from the plant Urceola huaitingii and their synergistic effects in combination with chemotherapeutics, Fitoterapia. 2016;112:175-182. https://doi.org/10.1016/j.fitote.2016.05.015
  3. Marienfeld C, Tadlock L, Yamagiwa Y, Patel T. Inhibition of cholangiocarcinoma growth by tannic acid, Hepatology. 2003;37:1097-1104. https://doi.org/10.1053/jhep.2003.50192
  4. Naus PJ, Henson R, Bleeker G, Wehbe H, Meng F, Patel T. Tannic acid synergizes the cytotoxicity of chemotherapeutic drugs in human cholangiocarcinoma by modulating drug efflux pathways. J Hepatol. 2007;46:222-229. https://doi.org/10.1016/j.jhep.2006.08.012
  5. Wakabayashi T, Hirokawa S, Yamauchi N, Kataoka T, Woo JT, Nagai K. Immunomodulating activities of polysaccharide fractions from dried safflower petals. Cytotechnology. 1997;25:205-211. https://doi.org/10.1023/A:1007947329496
  6. Ali Sahari M, Morovati N, Barzegar M, Asgari S. Physicochemical and antioxidant characteristics of safflower seed oil. Curr Nutr Food Sci. 2014;10:268-274. https://doi.org/10.2174/1573401310666141105221508
  7. Toma W, Guimaraes LL, Brito AR, Santos AR, Cortez FS, Pusceddu FH, et al. Safflower oil: an integrated assessment of phytochemistry, antiulcerogenic activity, and rodent and environmental toxicity. Revista Brasileira de Farmacognosia. 2014;24:538-544. https://doi.org/10.1016/j.bjp.2014.09.004
  8. Sabah FS, Saleh AA. Evaluation of antibacterial activity of flavonoid and oil extracts from safflower (Carthamus tinctorius L). Evaluation. 2015;5:41-44.
  9. Li LJ, Li YM, Qiao BY, Jiang S, Li X, Du HM, et al. The value of safflower yellow injection for the treatment of acute cerebral infarction: a randomized controlled trial. Evid Based Complement Alternat Med. 2015;2015:478793.
  10. Fan S, Lin N, Shan G, Zuo P, Cui L. Safflower yellow for acute ischemic stroke: a systematic review of randomized controlled trials. Complement Ther Med. 2014;22:354-361. https://doi.org/10.1016/j.ctim.2014.01.001
  11. Shi X, Ruan D, Wang Y, Ma L, Li M. Anti-tumor activity of safflower polysaccharide (SPS) and effect on cytotoxicity of CTL cells, NK cells of T739 lung cancer in mice. China journal of Chinese materia medica. 2010;35:215-218.
  12. Xi SY, Zhang Q, Wang C, Zhang JJ, Gao XM. Discussion of safflower inhibiting tumor in application and its mechanism of action. Chinese Archives of Traditional Chinese Medicine. 2008;26:1916-1917. https://doi.org/10.3969/j.issn.1673-7717.2008.09.029
  13. Luo Z, Zeng H, Ye Y, Liu L, Li S, Zhang J, et al. Safflower polysaccharide inhibits the proliferation and metastasis of MCF-7 breast cancer cell. Mol Med Rep. 2015;11:4611-4616. https://doi.org/10.3892/mmr.2015.3310
  14. Sun Y, Yang J, Zhang QQ, Wang X, Xu F, Li MZ, et al. Mechanism investigation of cell cycle arrest in hepatic cancer cell induced by safflower polysaccharide Chinese J Experimental Traditional Medical Formulae. 2014;13:046.
  15. Li JY, Yu J, Du XS, Zhang HM, Wang B, Guo H, et al. Safflower polysaccharide induces NSCLC cell apoptosis by inhibition of the Akt pathway. Oncol Rep. 2016;36:147-154. https://doi.org/10.3892/or.2016.4784
  16. Liang A, Jianghong Z, Taijun Z, Xiaoqing L, Qiong Z, Jun C. Analysis of the inhibitory effect of safflower polysaccharide on HT29 colorectal cancer cell proliferation and its relevant mechanism. Biomed Res. 2017;28:2966-2970.
  17. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 2007;35:495-516. https://doi.org/10.1080/01926230701320337
  18. Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death?. Autophagy. 2005;1:66-74. https://doi.org/10.4161/auto.1.2.1738
  19. Yu RJ, Liu HB, Yu Y, Liang L, Xu R, Liang C, et al. Anticancer activities of proanthocyanidins from the plant Urceola huaitingii and their synergistic effects in combination with chemotherapeutics, Fitoterapia. 2016;112:175-182. https://doi.org/10.1016/j.fitote.2016.05.015
  20. Liang L, Amin A, Cheung WY, Xu R, Yu R, Tang J, et al. Parameritannin A-2 from Urceola huaitingii enhances doxorubicin-induced mitochondria-dependent apoptosis by inhibiting the PI3K/Akt, ERK1/2 and p38 pathways in gastric cancer cells. Chem-Biol Interact. 2020;316:108924. https://doi.org/10.1016/j.cbi.2019.108924
  21. Greenwell M, Rahman PKSM. Medicinal Plants: Their Use in Anticancer Treatment. Int J Pharm Sci Res. 2015;6:4103-4112
  22. Sivaraj R, Rahman PKSM, Rajiv P, Vanathi P, Venckatesh R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc. 2014;129:255-258. https://doi.org/10.1016/j.saa.2014.03.027
  23. Fouche G, Cragg GM, Pillay P, Kolesnikova N, Maharaj VJ, Senabe J. In vitro anticancer screening of South African plants. J Ethnopharmacol. 2008;119:455-461. https://doi.org/10.1016/j.jep.2008.07.005
  24. Kamatou GPP, Van Zyl RL, Davids H, Van Heerden FR, Lourens ACU, Viljoen AM. Antimalarial and anticancer activities of selected South African Salvia species and isolated compounds from S. radula. S Afr J Bot. 2008;74:238-243. https://doi.org/10.1016/j.sajb.2007.08.001
  25. Alam MR, Kim SM, Lee JI, Chon SK, Choi SJ, Choi IH, et al. Effects of Safflower seed oil in osteoporosis induced-ovariectomized rats. Am J Chin Med. 2006;34:601-612. https://doi.org/10.1142/S0192415X06004132
  26. Hong HT, Kim HJ, Lee TK, Kim DW, Kim HM, Choo YK, et al. Inhibitory effect of a Korean traditional medicine, Honghwain-Jahage (water extracts of Carthamus tinctorius L. seed and Hominis placenta) on interleukin-1-mediated bone resorption. J Ethnopharmacol 2002;79:143-148. https://doi.org/10.1016/S0378-8741(01)00371-3
  27. Moon KD, Back SS, Kim JH, Jeon SM, Lee MK, Choi MS. Safflower seed extract lowers plasma and hepatic lipids in rats fed high-cholesterol diet. Nutr Res. 2001;21:895-904. https://doi.org/10.1016/S0271-5317(01)00293-7
  28. Bae SJ, Shim SM, Park YJ, Lee JY, Chang EJ, Choi SW. Cytotoxicity of phenolic compounds isolated from seeds of safflower (Carthamus tinctorius L.) on cancer cells lines. Food Sci Biotechnol. 2002;11:140-146.
  29. Frishman WH, Sung HM, Yee HC, Liu LL, Keefe D, Einzig AI, et al. Cardiovascular toxicity with cancer chemotherapy, Curr Probl Cancer. 1997;21:301-360. https://doi.org/10.1016/S0147-0272(97)80001-3
  30. Dalton WS, Grogan TM, Meltzer PS, Scheper RJ, Durie BG, Taylor CW, et al. Drug-resistance in multiple myeloma and non-Hodgkin's lymphoma: detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J Clin Oncol. 1989;7:415-424. https://doi.org/10.1200/JCO.1989.7.4.415
  31. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615-627. https://doi.org/10.1146/annurev.med.53.082901.103929
  32. Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol. 2001;41:367-401. https://doi.org/10.1146/annurev.pharmtox.41.1.367
  33. Kaufmann SH, Hengartner MO. Programmed cell death: alive and well in the new millennium. Trends Cell Biol. 2001;11:526-534. https://doi.org/10.1016/S0962-8924(01)02173-0
  34. Karch J, Molkentin JD. Regulated necrotic cell death: the passive aggressive side of Bax and Bak. Circ Res. 2015;116:1800-1809. https://doi.org/10.1161/CIRCRESAHA.116.305421