Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A1A01065032). And this paper was supported by Education and Research promotion program of the KOREATECH in 2021.
References
- J.M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42(1) (1973), 61-90. https://doi.org/10.1016/0022-247x(73)90121-2
- J.M. Ball, Stability theory for an extensible beam, J. Diff. Equ., 14(3) (1973), 399-418. https://doi.org/10.1016/0022-0396(73)90056-9
- V. Barbu, Nonlinear differential equations of monotone type in Banach spaces, Springer-Verlag, New York, 2010.
- S. Caddemi and I. Calio, Exact closed-form solution for the vibration modes of the EulerBernoulli beam with multiple open cracks, J. Sound Vibration, 327(3) (2009), 473-489. https://doi.org/10.1016/j.jsv.2009.07.008
- S. Caddemi and A. Morassi, Multi-cracked Euler-Bernoulli beams: Mathematical modeling and exact solutions, Inter. J. Solids Structures, 50(6) (2013), 944-956. https://doi.org/10.1016/j.ijsolstr.2012.11.018
- F. Cannizzaro and A. Greco and S. Caddemi and I. Calio, Closed form solutions of a multi-cracked circular arch under static loads, Inter. J. Solids Structures, 121 (2017), 944-956.
- M.N. Cerri and G.C. Ruta, Detection of localised damage in plane circular arches by frequency data, Journal of Sound and Vibration, 270(1) (2004), 39-59. https://doi.org/10.1016/S0022-460X(03)00482-6
- T.G. Chondros and A.D. Dimarogonas and J. Yao, A continuous cracked beam vibration theory, J. Sound Vibration,215(1) (1998), 17-34. https://doi.org/10.1006/jsvi.1998.1640
- S. Christides and A.D.S. Barr, One-dimensional theory of cracked Bernoulli-Euler beams, International Journal of Mechanical Sciences, 26(11) (1984), 639-648. https://doi.org/10.1016/0020-7403(84)90017-1
- A.D. Dimarogonas, Vibration of cracked structures: a state of the art review, Eng. Fracture Mechanics, 55(5) (1996), 831-857. https://doi.org/10.1016/0013-7944(94)00175-8
- E. Emmrich and M. Thalhammer, A class of integro-differential equations incorporating nonlinear and nonlocal damping with applications in nonlinear elastodynamics: Existence via time discretization, Nonlinearity, 24(9) (2011), 2523-2546. https://doi.org/10.1088/0951-7715/24/9/008
- S. Gutman and J. Ha, Shallow arches with weak and strong damping, J. Kor. Math. Soc., 54 (2017), 945-966. https://doi.org/10.4134/JKMS.j160317
- S. Gutman and J. Ha, Uniform attractor of shallow arch motion under moving points load, J. Math. Anal. Appl., 464(1) (2018), 557-579. https://doi.org/10.1016/j.jmaa.2018.04.025
- S. Gutman, J. Ha and S. Lee, Parameter identification for weakly damped shallow arches, J. Math. Anal. Appl., 403(1) (2013), 297-313. https://doi.org/10.1016/j.jmaa.2013.02.047
- J. Ha and S. Gutman and S. Shon, Variational setting for cracked beams and shallow arches, to appear in Arch. Appl. Mech., (2022).
- S.M. Han, H. Benaroya and T. Wei, Dynamics of transversely vibrating beams using four engineering theories, J. Sound Vibration, 225(5) (1999), 935-988. https://doi.org/10.1006/jsvi.1999.2257
- J. Kim, G. F. Dargush and Y. Ju, Extended framework of Hamilton's principle for continuum dynamics, Inter. J. Solids Structures, 50(20) (2013), 3418-3429. https://doi.org/10.1016/j.ijsolstr.2013.06.015
- H.P. Lin, S.C. Chang and J.D. Wu, Beam vibrations with an arbitrary number of cracks, J. Sound Vibration, 258(5) (2002), 987-999. https://doi.org/10.1006/jsvi.2002.5184
- W.M. Ostachowicz and M. Krawczuk, Analysis of the effect of cracks on the natural frequencies of a cantilever beam, J. Sound Vibration 150(2) (1991), 191-201. https://doi.org/10.1016/0022-460X(91)90615-Q
- E.I. Shifrin and R. Ruotolo, Natural frequencies of a beam with an arbitrary number of cracks, J. Sound Vibration, 222(3) (1999), 409-423. https://doi.org/10.1006/jsvi.1998.2083
- R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer, New York, 1997.
- S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. https://doi.org/10.1115/1.4010053