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COMPLEX DELAY-DIFFERENTIAL EQUATIONS OF

MALMQUIST TYPE

P. NAGASWARA AND S. RAJESHWARI∗

Abstract. In this paper, we investigate some results on complex delay-
differential equations of the classical Malmquist theorem. A classic illus-

trations of their results states us that if a complex delay equation

w(t+ 1) + w(t− 1) = R(t, w)

with R(t, w) rational in both arguments admits (concede) a transcendental

meromorphic solution of finite order, then degwR(t, w) ≤ 2. Development
and upgrade of such results are presented in this paper. In addition, Borel

exceptional zeros and poles seem to appear in special situations.
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1. Introduction

Existence of large classes of solutions that are meromorphic in the whole com-
plex plane is a rare property for differential equations. According to a classical
result due to Malmquist, if the first order differential equation

w′ = R(t, w) (1)

where R(t, w) is a rational in both arguments, has a transcendental meromorphic
solution, then (1) reduces into the Riccati Equation

w′ = a2w
2 + a1w + a0 (2)

with rational co-efficients. For more details concerning the equations (1) and (2)
as well as for generalization of the malmquist theorem, see [8].
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We first recall some existence results for solutions meromorphic in the complex
plane. An example of a complex delay equations combining existence and growth
restriction has been offered by S. Bank and R. Kaufman [2].

Theorem 1.1. For any rational function R(t) the delay Equation

w(t+ 1)− w(t) = R(t)

always has a meromorphic solution w such that T (r, w) = O(r).

Ablowtz, Halburd and Herbst [1] studied complex delay equations related to
(1) and (2) namely the equations,

w(t+ 1) + w(t− 1) =
ã0(t) + ã1(t)w + · · ·+ ãp(t)w

p

b̃0(t) + b̃1(t)w + · · ·+ b̃q(t)wq
(3)

and

w(t+ 1) + w(t− 1) = a(t) + b(t)w + c(t)w2, (4)

where the co-efficients are meromorphic functions to be specified later on. Also
the equation

w(t+ 1) + w(t− 1) =
ã0(t) + ã1(t)w + · · ·+ ãp(t)w

p

b̃0(t) + b̃1(t)w + · · ·+ b̃q(t)wq
, (5)

which is similar to (3), was studied in [1]. The following these results, reminiscent
of the classical malmquist theorem, were proved in [1].

Theorem 1.2. [1] If the difference equation (3), with polynomial co-efficients

ãi(t), b̃i(t) admits a transcendental meromorphic solution of finite order, then
d = max{p, q} ≤ 2.

Theorem 1.3. [1] Suppose that the coefficients a(t), b(t) in the difference equa-
tion (4) are polynomials and that c(t) is a non-zero complex constant. Then any
transcendental entire solution of (4) is of infinite order.

Theorem 1.4. [1] If the difference equation (5) with polynomial coefficients

ãi(t), b̃i(t) admits a transcendental meromorphic solution of finite order, then
d = max{p, q} ≤ 2.

This paper has been organized as follows. Here the essential growth problem
for meromorphic solution of complex difference equations is to find a lower bound
for their characteristic function. Theorem 1.6 is a generalization of Theorem
1.3 and Theorem 1.8 is devoted to considering a generalized form of the delay
equation (5). More precisely we show that in special cases only, it may happen
that zeros and poles are Borel exceptional value of a meromorphic solutions.

Proposition 1.1. [1] Let C1 . . . Cn ∈ C \ {0}. If the difference equation

k∑
i=1

w(t+ ci) =
ã0(t) + ã1(t)w + · · ·+ ãp(t)w

p

b̃0(t) + b̃1(t)w + · · ·+ b̃q(t)wq
(6)
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with rational coefficients ãi(t), b̃i(t) admits a transcendental meromorphic solu-
tion of finite order, then d ≤ k.

Proposition 1.2. [1] Let C1, . . . Cn ∈ C \ {0}. If the difference equations

k∏
i=1

w(t+ ci) =
ã0(t) + ã1(t)w + · · ·+ ãp(t)w

p

b̃0(t) + b̃1(t)w + · · ·+ b̃q(t)wq
(7)

with rational coefficients ãi(t), b̃i(t) admits a transcendental meromorphic solu-
tion of finite order, then d ≤ k.

Example 1.5. Let c ∈ C be a constant such that c ̸= π
2h, where h ∈ t. Since,

tan (t+ c) =
tan t+ tan c

1− tan t. tan c

we see that w(z) = tan t solves

w(t+ c) =
1

C

w(z)− C

w(z) + 1
c

where C := −tan c ̸= 0,∞.

Theorem 1.6. Let C1, . . . , Cn ∈ C\{0} and let l ≥ 2. Suppose w is a transcen-
dental meromorphic solution of the difference equation

k∑
i=1

ãi(t)w(t+ ci) =

l∑
i=0

b̃i(t)w(t)
i (8)

with rational co-efficient ãi(t) b̃i(t). Denote C := max{|c1|.......|cn|}. If w has
infinitely many poles, then there exists constants S > 0 and r0 > 0 such that
n(r, w) ≥ Sl

r
c holds for all r ≥ r0.

Proof. We multiply out the denominators of the coefficients ãi(t), b̃i(t) in (8)
to obtain

k∑
i=1

Pi(t)w(t+ ci) =

l∑
i=0

Qi(t)w(t)
i, (9)

where the coefficients Pi(t), Qi(t) are polynomials. We suppose that w, the solu-
tion of (8) and (9), is meromorphic with infinitely many poles.

Choose a pole t0 of w having multiplicity τ ≥ 1 such that t0 is not a zero of
Qi(t). Then the right hand side of (9) has a pole of multiplicity lτ at t0. Hence,
there exists at least one index lr1 ∈ {1, 2, 3, . . . , k} such that t0 + Ch1

is a pole
of w of multiplicity ν1 ≥ lτ . Substitute t0 + ch1 for w in (9) we obtain

k∑
i=1

Pi(t0 + Ch1)w(t0 + Ch1 + ci) =

k∑
i=0

Qi(t0 + Ch1)w(t0 + Ch1)
i (10)

we now have two possibilities.
(i) If t0 + Chi

is a zero of Ql(t), this process will be terminated and we have to
choose another pole t0 of w in the way we did above .
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(ii) If t0 + Chi
is not a zero of Ql(t), then we see that the right-hand side of

(10) has a pole of multiplicity lν1 at t0 + Ch1
. Hence, there exists at least one

index h2 ∈ {1, 2, 3, . . . , k} such that t0 + ch1
+ ch2

is a pole of w of multiplicity
ν2 ≥ lν1 ≥ l2τ. At this point we note that, as a polynomial, the coefficient Ql(t)
has finitely many zeros, all being inside of a finite dice |t| < R.

We proceed to follow the steps (i) and (ii) above, since there are infinitely
many poles of w, we will find a pole t0 of w such that

t0 + Ch1
+ ........+ Chj

=: ξj

is a pole of w of multiplicity νj for all j ∈ N . Since νj ≥ ljτ → ∞; as j → ∞,
and since w does not have essential singularities in the finite plane, we must
have |ξj | → ∞ as j → ∞. It is clear that for j large enough, say j ≥ j0,

τ lj ≤ τ(1 + l + ........+ lj) ≤ n(|ξj |, w)
≤ n(|w0|+ jC,w) ≤ n(ν + jC,w),

where v ∈ (|t0|, |t0|+C) can be chosen arbitrarily. Letting j → ∞ for each choice
of v, we see that

n(r, w) ≥ Sl
r
c

holds for all
r ≥ r0 := (j0 + 1)C + |w0|,

where
S := τ l−(|w0|+c)/c.

The fact that r0 and S both depend on |w0| is not a problem, since w0 is fixed.

Example 1.7. Fix k = l ∈ N \ {1}. Let ci ∈ C be constants such that eci = i

for all i = 1, 2, 3, . . . , k. Then w(t) = ee
t

/t solves

k∑
i=1

(t+ ci)w(t+ ci) =

k∑
i=1

tiw(t)i.

we now proceed to consider the value distribution of zeros and poles of solutions
of equation (7).

The following results tells us that solutions having Borel exceptional zero and
poles appear in special situations only .

Theorem 1.8. Let C1, . . . , Cn ∈ C \ {0} and suppose that w is a non-rational
meromorphic solution of

k∏
i=1

w(t+ ci) =
ã0(t) + ã1(t)w + .......+ ãp(t)w

p

b̃0(t) + b̃1(t)w + ........+ b̃q(t)wq
(11)

with meromorphic coefficient ãi(t), b̃i(t) of growth S(r, w) such that ap(t), bq(t) ̸≡
0.
If

max(λ(w), λ(
1

w
)) < p(w) (12)
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then (11) is of the form

k∏
i=1

w(t+ ci) = c(t)w(t)i (13)

where c(z) is meromorphic, T(r,c)=S(r,w) and j ∈ Z.
Proof. Denote X(t) =

∏k
i=1 w(t+ci). Fix constants β and γ such that max(λ(w), λ( 1

w )) <
β < γ < ρ(w), using (12) and the lemma of the logarithmic derivative, we get

T (r,
w′

w
) = N̄(r, w) + N̄(r,

1

w
) + S(r, w)

= O(rβ) + S(r, w).

Similarly

T (r,
X ′

X
) = N(r,

X ′

X
) +m(

X ′

X
)

≤ kN̄ (r + C,w(t)) + kN̄(r + C,
1

w(t)
) + S(r,X)

= O(rβ) + S(r, w),

where C := max{| C1 |, | C2 |, . . . , | Cn |}. Here we have applied the valiron-
Mohon’ko Theorem to the equation (7) to conclude that T (r,X) = dT (r, w) +
S(r, w) and so S(r,X) = S(r, w). Since zeros and poles are Borel exceptional
by (12), we may apply a result due to Whittaker, See[ [7], Satz 13.4], to deduce
that w is of regular growth. Hence there exists r0 > 0 such that T (r, w) > rγ for
r ≥ r0.
It follows that

T (r,
w′

w
) = S(r, w)

and

T (r,
X ′

X
) = S(r, w).

Rewriting (11) in the form

b̃q(t)

ãp(t)
X(t) =

P (t, w)

Q(t, w)
= u(t, w) (14)

we may suppose that P and Q are monic polynomials in w with coefficients of

growth S(r, w). Denote W :=
w′

w
, U := u′

u and observe that T (r, U) = S(r, w)

by (14). Since

P ′Q− PQ′

Q2
= u′ = Uu =

UP

Q
,

we get

P ′Q− PQ′ = UPQ. (15)
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writing w′ = Ww in (15), regarding then (15) as an algebraic equation in w with
coefficients of growth S(r, w) and comparing the leading coefficients, we obtain

(p− q)W = U.

Therefore, u(t) = αw(t)p−q or some α ∈ C, and so

X(t) = α
˜ap(t)

b̃q(t)
w(t)p−q, (16)

proving the assertion.

Example 1.9. We observed that
∏k

i=1 tan(t + ci) is rational function in tan t
not being of the form (13). Since

λ(tant) = λ(
1

tant
) = ρ(tant) = 1,

then condition (12) in Theorem 1.8 is necessary.

Example 1.10. Condition (12) in Theorem 1.8 cannot be replaced by

min(λ(w), λ(
1

w
)) < ρ(w),

since w(t) = sint satisfies

w(t+ 1)w(t− 1) = w(t)2 − sin21.

Example 1.11. Let A ∈ C \ {0} and p ∈ Z. Fix constants α, β ∈ C satisfying

αp+2 = A

and

β +
1

β
= −p

Then the delay equation

w(t+ 1)w(t− 1) =
A

w(t)p

which is clearly of the form (13), has an entire solution

w(t) = α exp(π(t)etlogβ).

Here π(t) is any periodic entire function of period 1.
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