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NORMAL AND COSETS OF (γ, ∂)-FUZZY HX-SUBGROUPS
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Abstract. In this paper, the concept of (γ, ∂)-fuzzy HX-subgroups is in-

troduced. We present some properties of (γ, ∂)-normal fuzzyHX-subgroups
and we discuss some results related to (γ, ∂)-fuzzy cosets.
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1. Introduction

As a generalization of subsets notion in ordinary set theory, Zadeh [1] intro-
duced fuzzy subsets concepts. Many algebraic structures have been fuzzified.
And it was the first in 1971 by Rosenfeld [2] discussed a fuzzy subgroup concept.
Most works recent on fuzzy subgroups used definition of Rosenfeld. Massa’deh
and Hatamleh [3, 4] investigated the notions of fuzzy subgroups with opera-
tors and L-Q-fuzzy quotient, for more details of fuzzy subgroups and related
results see [5, 6, 7]. In 1987, Li Hongxing [8] gave HX−group concepts and
Luo chengzhong et al [9] introduced the fuzzy HX−group concepts. Here after,
more important interesting results about a fuzzy HX−subgroups and its prop-
erties have been obtained (see, e.g., [10, 11, 12, 13, 14] Some extensions of fuzzy
subgroups emerged. Bhakat and Das [15] discussed (ϵ, ϵ ∨ q)− fuzzy subgroup
concept, while. In 2003, Yao [16] introduced the concept of (λ, µ)−fuzzy normal
subgroups as a generalization of (ϵ, ϵ∨q)−fuzzy subgroup. Moreover, Chinnadu-
rai and Arul mozhi [17] introduced and studied a (η, δ)−bipolar fuzzy ideal and
bi-ideal.

In this paper, we conduct a study a bout (γ, ∂)−HX− fuzzy subgroups. The
paper contains some properties of (γ, ∂)−HX−fuzzy subgroups, (γ, ∂)−HX−
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normal fuzzy subgroups and (γ, ∂)−fuzzy cosets and discussed some of their
related results.

2. PRELIMINARIES

Definition 2.1. [1] If G is a non empty set. A fuzzy subset λ of G is a function
λ : G → [0, 1].

Definition 2.2. [8] An HX− group on G is a non empty set ν ⊂ 2G − {ϕ}
such that ν is a group with respect to the algebraic operation defined by XY =
{xy;x ∈ X and y ∈ Y }, and E is the unit element .

Definition 2.3. [9] If ν ⊂ 2G − {ϕ} is an HX−group on G, and λ is a fuzzy
subset defined on G. A fuzzy set δλ defined on ν is called fuzzy HX−subgroup
on ν if for any X,Y ∈ ν

(1) δλ(XY ) ≥ min{δλ(X), δλ(Y )}
(2) δλ(X

−1) = δλ(X)

where δλ(X) = max{λ(x), for all x ∈ X ⊂ G}.

Definition 2.4. [2] If λ is a fuzzy subset of ν and α ∈ [0, 1], suppose that
λα = {X ∈ ν, λ(X) ≥ α}. Then λα is called a level subset of λ.

Lemma 2.5. [11] A fuzzy subset λ of ν is a fuzzy HX−subgroup if and only if
λα ̸= ϕ is a crisp HX−subgroup of ν for every α ∈ [0, 1].

Proof. Straightforward. □

Proposition 2.6. If λ is a fuzzy subset of ν. Then λ is normal fuzzy HX−subgroup
of ν if and only if λα ̸= ϕ is a normal HX−subgroup of ν for all α ∈ [0, 1].

Proof. Straightforward. □

3. (γ, ∂) FUZZY AND NORMAL FUZZY HX−SUBGROUP

Definition 3.1. If λ is a fuzzy subset of ν. λ is called a (γ, ∂)− fuzzyHX−subgroup
of ν if:

(1) λ(XY ) ∨ γ ≥ λ(X) ∧ λ(Y ) ∧ ∂
(2) λ(X−1) ∨ γ ≥ λ(X) ∧ ∂ for all X,Y ∈ ν.

Since, a (0, 1)− fuzzy HX−subgroup is just fuzzy HX−subgroup, while a (γ, ∂)
fuzzy HX−subgroup is a generalization of fuzzy HX−subgroup.

Lemma 3.2. Let λ be a (γ, ∂)−fuzzy HX−subgroup of ν, then λ(E) ∨ γ ≥
λ(X) ∧ ∂ for all X ∈ ν and E is the identity in ν.

Proof. Straightforward. □

Corollary 3.3. If λ is a (γ, ∂)−fuzzy HX−subgroup of ν. Then

(1) If λ(X) ≥ ∂, then λ(E) ≥ ∂for some X ∈ ν.
(2) If λ(X) ≤ ∂ for all X ∈ ν and I = {X; γ < λ(X) < ∂} ≠ ϕ, then

λ(E) = max{λ(X);X ∈ ν}.
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(3) If λ(E) ≤ γ, then λ(X) ≤ γ for all X ∈ ν.

Proof. (1) For some λ(X) ≤ λ(E), if λ(X) ≥ ∂ then λ(E) ∨ γ ≥ λ(X) ∧ ∂
by Lemma3.2; thus λ(E) ≥ ∂.

(2) When X ∈ I by Lemma 3.2, λ(E) ∨ γ ≥ λ(X) ∧ ∂ = λ(X) that is
λ(E) ≥ λ(X). Then λ(E) > γ while, if X /∈ I, λ(X) ≥ γ due to
λ(X) < ∂.λ(E) = λ(E) ∨ γ ≥ λ(X) ∧ ∂ = λ(X) by Lemma 3.2. Thus,
λ(X) ≤ λ(E) for all X ∈ ν that is, λ(E) = max{λ(X);X ∈ ν}.

(3) If λ(E) ≥ γ, thus γ = λ(E)∨γ ≥ λ(X)∧∂ for all X ∈ ν, then λ(X) ≤ γ
due to γ < ∂.

□

Proposition 3.4. If λ is a (γ, ∂)− fuzzy HX− subgroup of ν and γ < λ(E) < ∂.
Then:

(1) λ(X) ≤ λ(E) hold for all X ∈ ν.
(2) λ(X) = λ(E) for all X ∈ λλ(E).

Proof. (1) If λ(X) ≥ λ(E) for some X ∈ ν, then λ(E) ≥ ∂ by Corollary
3.3 (1), which is contradiction. Hence λ(E) < ∂ for all X ∈ ν. Since
E ∈ I, λ(X) ≤ λ(E) satisfy for all X ∈ ν by Corollary 3.3(2).

(2) λ(X) ≥ λ(E) for every X ∈ λλ(E) by (1) λ(X) ≤ λ(E) then λ(X) =
λ(E).

□

Lemma 3.5. If λ is a (γ, ∂)−fuzzy subset of ν, then λ is a (γ, ∂)−fuzzy HX−subgroup
of ν iff λα ̸= ϕ is a HX−subgroup of ν for all α ∈ (γ, ∂].

Proof. Straightforward. □

Theorem 3.6. If λ is a (γ, ∂)− fuzzy HX−subgroup of ν and X ∈ ν then:

(1) If λ(X) ≥ ∂, then λ(X−1) ≥ ∂.
(2) If γ < λ(X) < ∂ , then ∂(X) = λ(X−1).
(3) If λ(X) ≤ γ, then λ(X−1) ≤ γ.

Proof. By Lemma 3.5 λα ̸= ϕ is a HX−subgroup of ν for all α ∈ (γ, ∂].

(1) If λ(X) ≥ ∂, then X ∈ λ∂ . Since λ∂ is aHX−subgroup of ν,X−1 ∈ λ∂ ,
that is λ(X−1) ≥ ∂.

(2) If γ < λ(X) < ∂, then λ(X) = λ(X) ∨ γ ≥ λ(X−1) ∧ ∂ = λ(X−1).
If λ(X−1) ∧ ∂ = ∂, then λ(X−1) ≥ ∂; that is, λ(X) ≥ ∂ which is
contradictory to that λ(X) < ∂. Hence λ(X) ≥ λ(X−1). Furthermore,
since X ∈ λλ(X) and λλ(X) is a HX−subgroup of ν we have X−1 ∈
λλ(X). Therefore, λ(X

−1) ≥ λ(X) and we get λ(X) = λ(X−1).

(3) Assume λ(X−1) > γ. Let β0 = min{λ(X−1), ∂}. Then γ < β0 ≤ ∂, and
λ(X−1) ≥ β0. Thus X

−1 ∈ λβ0 , by Lemma 3.5, λβ0 is a HX−subgroup
of ν and thus X ∈ λβ0

therefore γ < β0 ≤ λ(X) which is a contradiction
to that λ(X) ≤ γ. Hence λ(X−1) ≤ γ.

□
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Corollary 3.7. If λ is a (γ, ∂)−fuzzy HX−subgroup of ν and X,Y ∈ ν.

(1) If λ(X), λ(Y ) ≥ ∂, then λ(XY ) ≥ ∂.
(2) If γ < λ(X) < ∂, λ(X) < λ(Y ), then λ(XY ) = λ(X) = λ(Y X).
(3) If λ(X) ≤ γ, λ(Y ) > γ, then λ(XY ) ≤ γ and λ(Y X) ≤ γ.

Proof. For all β ∈ (γ, ∂]λβ ̸= ϕ is a HX−subgroup of ν by Lemma 3.5.

(1) Since λ(X), λ(Y ) ≥ ∂, thus X,Y ∈ λ∂ and since λ∂ is aHX−subgroup
of ν, we have XY ∈ λ∂ , that is λ(XY ) ≥ ∂.

(2) If λ(X) = β1, λ(Y ) = β2 and λ(XY ) = β3. Then γ < β1 ≤ ∂ and
β2 > β1. Now, we have γ < λ(X) < λ(Y ) then X,Y ∈ λβ and thus
XY ∈ λβ by Lemma3.5 (1) therefore λ(XY ) ≥ β1 hence β3 ≥ β1. If
β3 > β1, let β0 = min{β2, β3, ∂}. Then γ < β0 ≤ ∂ and XY, Y ∈ λβ0

.
By Lemma 3.5, λβ0

is a HX−subgroup of ν, thus X = XY Y −1 ∈ λβ0
.

Hence β1 < β3 ≤ β0 ≤ λ(X) which is a contradiction. Therefore,
β3 = β1, that is λ(XY ) = λ(X) by the same, λ(X) = λ(Y X).

(3) Assume λ(XY ) > γ. Let β0 = min{λ(XY ), λ(Y ), ∂} then γ < β0 ≤ ∂
andXY, Y ∈ λβ0

. By Lemma 3.5, λβ0
is aHX−subgroup of ν, thusX =

XY Y −1 ∈ λβ0
. It follows that γ < β0 ≤ λ(X), which is a contradiction.

Thus λ(XY ) ≤ γ. By the same λ(Y X) ≤ γ.

□

Definition 3.8. If λ is a (γ, ∂)− fuzzy HX−subgroup of ν, λ is a (γ, ∂)− normal
fuzzy HX−subgroup of ν if λ(XYX−1) ∨ γ ≥ λ(Y ) ∧ ∂ for all X,Y ∈ ν.

Proposition 3.9. If λ is a (γ, ∂)− fuzzy HX−subgroup of ν, then

(1) λ is a (γ, ∂)− normal fuzzy HX−subgroup of ν if and only if λ(XY )∨γ ≥
λ(Y X) ∧ ∂ for all X,Y ν.

(2) λ is a (γ, ∂)−normal fuzzy HX−subgroup of ν, iff λβ ̸= ϕis a normal
HX−subgroup of ν for all β ∈ (γ, ∂].

Proof. Straightforward. □

Theorem 3.10. If λ is a (γ, ∂)− normal fuzzy HX−subgroup of ν, then:

(1) If λ(X) ≥ ∂, then λ(Y XY −1) ≥ ∂ for allX,Y ∈ ν.
(2) If γ < λ(X) < ∂, λ(X) < λ(Y ), then λ(Y XY −1) = λ(X) for all X,Y ∈

ν.
(3) If Y ∈ ν and γ < λ(XY ) < ∂, then λ(XY ) = λ(Y X).
(4) If Y ∈ ν and λ(XY ) ≥ ∂, then λ(Y X) ≥ ∂.
(5) If Y ∈ ν and λ(XY ) ≤ γ, then λ(Y X) ≤ γ.

Proof. (1) If λ(X) ≥ ∂, then X ∈ λ∂ . By Proposition 3.9(2), λ∂ is a normal
HX−subgroup of ν and hence Y XY −1 ∈ λ∂ . Thus λ(Y XY −1).

(2) If λ(X) = β. Then γ < β < ∂. By Proposition 3.9(2) λβ is a normal
HX−subgroup of ν and hence Y XY −1 ∈ λβ . Thus λ(Y XY −1) ≥ β =
λ(X). Suppose that λ(Y XY −1) > β, put β0 = min{λ(Y XY −1), ∂}.
Then γ < β0 < ∂. By Proposition3.9(2), λβ0

is a normal HX−subgroup
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of ν and thus Y XY −1 ∈ λβ0
. Then X = Y −1(Y XY −1)Y ∈ λβ0

,
we get λ(X) ≥ β0 > β which is a contradiction to λ(X) = β. Then
λ(Y XY −1) = λ(X).

(3) If γ < λ(XY ) < ∂, then λ(Y X) = λ(X−1(XY )X) = λ(XY ) by (2), we
get λ(XY ) = λ(Y X).

(4) If λ(XY ) ≥ ∂, then XY ∈ λ∂ but X ∈ λ∂ is a normal HX−subgroup
of ν by Proposition 3.9(2), Y X = X−1(Y X)X ∈ λ∂ ; thus λ(Y X) ≥ ∂.

(5) Assume λ(Y X) > γ on the contrary. If λ(Y X) ≥ ∂, then by (1)
λ(XY ) ≥ ∂ and its contradiction to λ(XY ) ≤ γ, therefore λ(Y X) ≤ γ.

□

4. COSETS OF a (γ, ∂)− FUZZY HX−SUBGROUP

Definition 4.1. If λ is a (γ, ∂)−fuzzy HX−subgroup of ν and X ∈ ν. A fuzzy
subsets Xλ and λX of ν define respectively by:
(Xλ)(Y ) = (λ(X−1Y ) ∨ γ) ∧ ∂
(λX)(Y ) = (λ(Y X−1) ∨ γ) ∧ ∂.
For all Y ∈ ν. Xλ and λX will be called a left and right cosets of λ respectively.

Remark 4.1. Eλ = λE, γ ≤ (λX)(Y ) ≤ ∂ and γ(X∂)(Y ) ≤ ∂ which are valid
for all Y ∈ ν.

Corollary 4.2. If λ, δ are a (γ, ∂)− fuzzy HX−subgroup of ν. Then:

(1) X(Y λ) = (XY )λ.
(2) (λX)Y = λ(XY ).
(3) Xλ = Y δ iff Eλ = (X−1Y )δ and Eλ = (Y −1X)δ.
(4) λX = δY iff λE = δ(X−1Y ) and λE = δ(Y −1X).
(5) If λ = δ, then Xλ = Y λ iff Eλ = (X−1Y )λ and Eλ = (Y −1X)δ.
(6) λX = λY iff λE = λ(X−1Y ) and λE = λ(Y −1X). For all X,Y ∈ ν.

Proof. Straightforward. □

Remark 4.2. If λ is a (γ, ∂)−fuzzy HX−subgroup of ν. Then

(1) γ < λ(X) < ∂, then (Eλ)(X) = (λX).
(2) If λ(X) ≥ ∂, then (Eλ)(X) = ∂.
(3) If λ(X) ≤ γ, then (Eλ)(X) = γ.

Theorem 4.3. Let λ be a (γ, ∂)−fuzzy HX−subgroup of ν and λ(E) ≥ ∂, then
X ∈ λ∂ if and only if Xλ = Eλ.

Proof. ⇒ Suppose that X ∈ λ∂ , since λ∂ is a HX− subgroup of ν by proposition
3.9(2), then X−1 ∈ λ∂ , thus λ(X

−1) ≥ ∂ by Theorem 3.6(1). If Y ∈ ν, we have
three cases.
Case 1. If λ(Y ) ≥ ∂, then Y ∈ λ∂ and X−1Y ∈ λ∂ . That is, λ(X−1Y ) ≥ ∂ by
Corollary 3.7(1) then:
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(Xλ)(Y ) = (λ(X−1Y ) ∨ γ) ∧ ∂
= ∂
= (λ(Y ) ∨ γ) ∧ ∂
= (Eλ)(Y ).

Case 2. If γ < λ(X) < ∂, then λ(X−1Y ) = λ(Y ) by Corollary 3.7(2). Thus

(Xλ)(Y ) = (λ(X−1Y ) ∨ γ) ∧ ∂
= (λ(Y ) ∨ γ) ∧ ∂
= (Eλ)(Y ).

Case 3. If λ(X) ≤ γ, then λ(X−1Y ) ≤ γ by Corollary 3.7(2). Thus

(Xλ)(Y ) = (λ(X−1Y ) ∨ γ) ∧ ∂
= ∂
= (λ(Y ) ∨ γ) ∧ ∂
= (Eλ)(Y ).

In summary Y λ = Eλ. ⇔ Suppose that Y λ = Eλ, then we have:

(Y λ)(Y ) = (Eλ)(Y )
(λ(Y −1Y ) ∨ γ) ∧ ∂ = (λ(Y ) ∨ γ) ∧ ∂
(λ(E) ∨ γ) ∧ ∂ = (λ(Y ) ∨ γ) ∧ ∂
∂ = (λ(Y ) ∨ γ) ∧ ∂ ( Hence λ(E) ≥ ∂)

Then λ(Y ) ≥ ∂ and hence Y ∈ λ∂ .
Similarly, if λ be a (γ, ∂)−fuzzy HX−subgroup of ν and λ(E) ≥ ∂, then

X ∈ λ∂ iff λX = λE. □

Proposition 4.4. Let λ be a (γ, ∂)−fuzzy HX−subgroup of ν and Y ∈ λ∂ then
Y λ = Eλ = λY.

Proof. Y ∈ λ∂ , then λ(E) ≥ ∂ by Corollary 3.3 and thus Y λ = Eλ and
λE = λY. It follows Y λ = Eλ = λY. □

Theorem 4.5. If λ be a (γ, ∂)−fuzzy HX−subgroup of ν. Then:

(1) Xλ∂ = Y λ∂ if and only if Xλ = Y λ provided λ∂ ̸= ϕ where X,Y ∈ ν.
(2) If γ < λ(E) < ∂, then λ(X) = λ(E) iff Xλ = Eλ.

Proof.
1.Xλ∂ = Y λ∂

⇔ Y −1X ∈ λ∂

⇔ (Y −1X)λ = Eλ ( Theorem 3.6)
⇔ Xλ = Y λ ( Corollary 4.2(5))

2. ⇒ Suppose that λ(X) = λ(E), that is, X ∈ λλ(E). By Lemma 3.5, λλ(E)

is a HX−subgroup of ν. We have X−1 ∈ λλ(E), thus, λ(X
−1) ≥ λ(E) and so

λ(X−1) = λ(E) take Y ∈ ν. We have λ(Y ) ≤ λ(E) by Corollary 3.3. There are
three cases:
Case1. λ(Y ) ≤ γ. Thus λ(X−1Y ) ≤ γ by Corollary 3.7(3) and so:
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(Xλ)(Y ) = (λ(X−1Y ) ∨ γ) ∧ ∂
= ∂
= (λ(Y ) ∨ γ) ∧ ∂
= (Eλ)(Y ).

Case 2. If γ < λ(Y ) < λ(E) = λ(X−1), then λ(X−1Y ) = λ(Y ) by Corollary
3.7(2) and so

(Xλ)(Y ) = (λ(X−1Y ) ∨ γ) ∧ ∂
= (λ(Y ) ∨ γ) ∧ ∂
= (Eλ)(Y ).

Case 3. If λ(X) = λ(E) we have X−1, Y ∈ λλ(E) (λλ(E) is HX−subgroup of

ν). Then X−1Y ∈ λλ(E) and thus λ(X−1Y ) ≥ λ(E). Hence λ(X−1Y ) = λ(E)

and we get λ(X−1Y ) = λ(Y ) = λ(E). Then

(Xλ)(Y ) = (λ(X−1Y ) ∨ γ) ∧ ∂
= (λ(Y ) ∨ γ) ∧ ∂
= (Eλ)(Y ).

Therefore Xλ = Eλ.
⇔ Suppose that Xλ = Eλ. Then

(Xλ)(X) = (Eλ)(X)
(λ(X−1X) ∨ γ) ∧ ∂ = (λ(X) ∨ γ) ∧ ∂
λ(E) = (λ(X) ∨ γ) ∧ ∂ (γ < λ(E) < ∂)
λ(E) = λ(X).

□

Corollary 4.6. If λ be a (γ, ∂)−fuzzy HX−subgroup of ν then Xλλ(E) =
Y λλ(E) iff Xλ = Y λ provided γ < λ(E) < ∂ for any X,Y ∈ ν.

Proof.
Xλλ(E) = Y λλ(E)

⇔ Y −1X ∈ λλ(E)

⇔ (Y −1X)λ = Eλ
⇔ Xλ = Eλ.

□

Theorem 4.7. If λ be a (γ, ∂)−fuzzy HX−subgroup of ν,Xλ = Y λ and γ <
λ(X) < ∂ then λ(X) = λ(Y )for any X,Y ∈ ν.

Proof. Xλ = Y λ then (Y −1X)λ = Eλ. We have two cases:

Case 1. If λ(Y ) ≥ ∂ then by Theorem 3.6, X−1Y ∈ λ∂ , thus (X−1Y ) ≥ ∂.
By Corollary 3.7 and γ < λ(X) < ∂, λ(X) = λ(X(X−1Y )) = λ(Y ).

Case 2. If λ(E) < ∂ and γ < λ(X) < ∂, then λ(X) < λ(E) < ∂ and then
λ(X−1Y ) = λ(E) by Thereom 3.10(2).
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If λ(X) < λ(E) = λ(X−1Y ) therefore λ(X) = λ(X(X−1Y )) = λ(Y ).
If λ(X) = λ(E) = λ(X−1Y ) then X,X−1Y ∈ λλ(E), hence λ is a (γ, ∂)−fuzzy

HX−subgroup of ν, λλ(E) is a HX−subgroup of ν. Therefore Y = X(X−1Y ) ∈
λλ(E) and then λ(Y ) ≥ λ(E), then λ(X) = λ(E) = λ(Y ). □

Corollary 4.8. If λ be a (γ, ∂)−fuzzy HX−subgroup of ν, such that β ∈
(γ, ∂], λβ ̸= ϕ. If Xλ = Y λ then Xλβ = Y λβ .

Proof. λβ is a HX−subgroup by Lemma 3.5 and λβ ̸= ϕ and γ < β ≤ λ(E), by
Xλ = Y λ, we know that (Xλ)(Y ) = (Y λ)(Y ) that is
(λ(X−1Y )∨γ)∧∂ = (λ(E)∨γ)∧∂ = λ(E)∨γ. If λ(E) ≥ ∂ then If λ(X−1Y ) ≥ ∂,
that is X−1Y ∈ λ∂ ⊆ λβ and hence Xλβ = Y λβ .

If λ(E) < ∂, then λ(X−1Y ) = λ(E) that is X−1Y ∈ λλ(E) by λλ(E) ⊆ λβ ,

then X−1Y ∈ λβ . Therefore Xλβ = Y λβ .
□

5. CONCLUDING REMARKS

A (γ, ∂)−fuzzy subgroups concepts discussed by Yuen et al. In this paper, we
studied a (γ, ∂)−fuzzy HX−subgroup, normal and cosets with suitable proper-
ties. We extended these ideas to the intuitionistic bipolar fuzzy HX−subgroup
and discussed some properties of them.
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