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OPTIMAL CONTROL STRATEGY TO COMBAT THE
SPREAD OF COVID-19 IN ABSENCE OF EFFECTIVE

VACCINE

M.H.A. BISWAS∗, M.S. KHATUN, M.A. ISLAM, S. MANDAL, A.K. PAUL AND A. ALI

Abstract. Many regions of the world are now facing the second wave of
boomed cases of COVID-19. This time, the second wave of this highly
infectious disease (COVID-19) is becoming more devastating. To control
the existing situation, more mass testing, and tracing of COVID-19 posi-
tive individuals are required. Furthermore, practicing to wear a face mask
and maintenance of physical distancing are strongly recommended for ev-
eryone. Taking all these into consideration, an optimal control problem
has been reformulated in terms of nonlinear ordinary differential equations
in this paper. The aim of this study is to explore the control strategy of
coronavirus-2 disease (COVID-19) and thus, minimize the number of symp-
tomatic, asymptomatic and infected individuals as well as cost of the con-
trols measures. The optimal control model has been analyzed analytically
with the help of the necessary conditions of very well-known Pontryagin’s
maximum principle. Numerical simulations of the optimal control problem
are also performed to illustrate the results.
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1. Introduction

At present, COVID-19 is the main concern of the whole world and the second
wave of the spreading of the infection has been already started. It is a blood
vessel disease caused by SARS-CoV-2 which was emerged in Wuhan, China
in December 2019 [34, 35, 42]. Several infectious diseases like COVID-19 which
taken millions of lives such as Bubonic plague (Europe and West Asia in 541-542
[19, 33, 40], Europe, Asia and North Africa in 1346-1353 [2], Italy in 1629-1656
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[23, 42]), Smallpox (Japan in 735-737 [29, 44], Mexico in 1519-1520 [1]), In-
fluenza (England in 1775-1776 [38]), Influenza A (H2N2, H3N2) (Worldwide in
1957-1970 [37]) Cholera (Asia, Europe and North America in 1817-1837, Middle
East in 1863-1875 [23]), Typhus (Russia in 1918-1922 [36]), HIV/AIDS (World-
wide in 1981 to present [45]), Ebola (Worldwide in 2013-2016 [22]) came in
several time. Since COVID-19 is one of the most infectious diseases, older peo-
ple with diabetes, cardiovascular disease, cancer, and chronic respiratory disease
are mostly in a dangerous region. The virus may be transmitted to others
through the sneezes, coughs, saliva, even respiratory secretions of an infected
individual. Therefore, separation, awareness, and self-protection are the best ef-
ficacious ways to control the spread of COVID-19 until an effective vaccine come.

The infected individuals having no symptoms spread the disease from human
to human. Therefore, the identification of the infected individuals is very im-
portant to separate them from uninfected individuals. The infection can also
spread through the household waste of infected individuals [17]. In this case,
mass testing is crying need to identify the infected individuals and it can control
the transmission of the infection in the mass community. But it is not possi-
ble to identify all the infected patients among more than 7 billion people. A
clinical report presented that COVID-19 positive patients with lower immune
systems lose the capacity of smelling but not for the patients with a higher im-
mune system [14]. In this case, the spread of COVID-19 can be controlled by
maintaining physical distancing (at least 6 feet) and wearing a virus protectable
mask especially a nose mask. Even in the hospital, proper physical distancing
and virus protecting mask should have to be ensured, otherwise, all the hospital-
ized uninfected patients may be infected widely [21]. However, after identifying
the COVID-19 positive patients, proper treatments should be served as soon as
possible according to the symptoms. Besides, in order to promote the immune
system, one may take immune-boosting foods and some vitamins because the
immunized individuals have less possibility to be infected by COVID-19 [3].

The mechanisms of spreading infectious diseases were described briefly at dif-
ferent times by Biswas et al. [4, 5, 6, 7, 8, 9, 10, 11, 12]. In these papers, the
spreading of infectious diseases and the control strategies were well-described
through several mathematical models and optimal control techniques. In the
pandemic situation of COVID-19, several research models on the spreading and
controlling of COVID-19 were developed. Kucharski et al. [30] developed a
mathematical model on early transmission and the control of the spread of
COVID-19. Lin et al. [32] developed a conceptual model for the outbreak
of COVID-19 in Wuhan considering the behaviors of individuals and the ac-
tions of the government, whereas Wu et al. [47] proposed and analyzed briefly
a mathematical model on the domestic and international spread of COVID-19.
Kabir et al. [24] developed nonlinear mathematical modeling to describe the
dispersal effect to moderate the infection of COVID-19 in Bangladesh. Lin et
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al. [31] showed that the infection of COVID-19 can transmit easily at lower
temperatures and hardly spread at higher temperatures. Considering in mind,
he developed an optimal control model considering relative humidity as the con-
trol measures to control the transmission of COVID-19. Readers can also follow
(Rowe, et al. [41]; Eckardt et al. [18]; Zhang et al. [49]; Zhao et al. [50, 51];
Chen et al. [15]; Xu et al. [48]; Khatun and Biswas [25, 26, 27]) for more infor-
mation about the spreading causes and controlling techniques of COVID-19 as
well as very recent implementation of models and optimal control techniques.

The spreading of infection of COVID-19 is continuously going on and will
remain until an effective vaccine will come in hand. In such a situation, we have
to aware of the factors by which the infection is spreading mostly, and have also
to adopt more testing to identify more COVID-19 infected individuals. To come
out from such a pandemic situation, mass awareness, more testing, and proper
treatment should be implemented. Therefore, we developed an optimal control
strategy approaching a nine compartmental nonlinear mathematical model con-
sidering three control variables. Mass testing and tracing or identification of the
COVID-19 positive patients, maintenance of physical distancing and wearing
face mask, and effective treatment for corresponding complications and taking
immune-boosting foods and drugs are the most effectual ways to defend COVID-
19 at this stage. We have introduced all these things in the formulated model.
The model has been analyzed both analytically and numerically. Our aim is to
employ the control strategies so that the number of symptomatic, asymptomatic
and infected individuals is minimized at the minimum cost of the optimal con-
trols and eventually, control the outbreak of COVID-19 among populations.

2. Optimal Control Model of COVID-19

Coronavirus-2 disease (COVOD-19) is exceedingly transmissible having no
specific drugs that can cure the infection. Although vaccines for this disease are
under development, several of these vaccines are still in the human testing phase
[46]. The WHO assures that when a safe and efficacious vaccine is discovered,
they will help to provide these vaccines to all countries in the world. In that case
they will prioritize the most vulnerable people in the world. Until then, we have
to fight with COVID-19 by adopting some measures like maintenance of physi-
cal distancing and identification of COVID-19 positive patients (mass testing).
Since COVID-19 is a highly infectious disease, maintenance of physical distanc-
ing is strictly recommended as much as possible to avoid unexpected infections.
Further, the more people will be tested, the more COVID-19 positive carriers will
be identified. That is why people are being highly suggested to come under test.
However, once COVID-19 is infected, doctors suggest treatment considering the
symptoms like fever, cough, and diarrhoea to control complications and give our
body time to heal. So, taking all these scenarios into consideration, we have in-
troduced three control measures (u1(t), u2(t), u3(t)) in our previously developed
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mathematical model [13]. In our prior study, we formulated a nine compartmen-
tal model of COVID-19 showing the impact of symptomatic and asymptomatic
individuals in the outbreak of this novel coronavirus disease through the follow-
ing set of nonlinear ordinary differential equations:

dS
dt = ∆+ ρS (t)Q (t)− (αE (t) + φ I (t))S (t)− µS (t)

dE
dt = αS (t)E (t)− (β1 + β2 + γ3)E (t)− µE (t)

dQ
dt = γ3E (t)− ρS (t)Q (t)− γ4Q (t)− µQ (t)

dM
dt = β1E (t) + γ4Q (t)− γ1M (t)− µM (t)

dA
dt = β2E (t)− γ2A (t)− µA (t)

dI
dt = γ1M (t) + γ2A (t) + φS (t) I (t)− (δ + ψ1 + ψ2 + µ) I (t)

dH
dt = δ I (t)− (λ1 + λ2 + µ)H (t)

dR
dt = λ2H (t) + ψ1 I (t)− µR (t)

dD
dt = λ1H (t) + ψ2 I (t)

(1)

with initial conditions, S(0) = S0, E(0) = E0, Q(0) = Q0, M(0) = M0, A(0) =
A0, I(0) = I0, H(0) = H0, R(0) = R0, D(0) = D0.

In model (1), ∆ represents the source rate of susceptible individuals and
ρS (t)Q (t) is the latent term of the individuals.β1E(t) and β1E(t) are the in-
fection terms of the symptomatic and asymptomatic individuals. γ1M(t), γ2A(t)
and φS (t) I (t) are the terms which represent the probabilities of transmission
of infections from symptomatic, asymptomatic and susceptible individuals re-
spectively. γ3E(t) denotes the quarantined term of exposed individuals. The
quarantined individuals move to the susceptible and symptomatic individual
compartment by terms ρS (t)Q (t) and γ4Q(t) respectively. δ I (t) is the term
at which the infected individuals become hospitalized. λ1H (t) and ψ2 I (t) are
the death terms of hospitalized individuals and infected individuals respectively.
λ2H (t) represents the recovery term of hospitalized individuals and ψ1 I (t)
is the recovery term infected individuals for self-immunity system. The terms
µS(t), µE(t), µQ(t), µM(t), µA(t), µI(t), µH(t) and µR(t) are the natural
deaths of susceptible, exposed, quarantined, symptomatic, asymptomatic, in-
fected, hospitalized and recovered individuals respectively.

Herein, we have proposed an optimal control problem based on this mathe-
matical model (1). The following Figure 1 shows the flow chart of the optimal
control system:

Taking the Figure 1 into consideration, a dynamical system can be re-constructed
in terms of the following set of nonlinear ordinary differential equations (ODEs):
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Figure 1. Schematic diagram of optimal control system of
COVID-19. In the diagram u1(t), u2(t), and u3(t) (shown by
orange color with dotted lines) represent the mass testing, phys-
ical distancing and treatment control measures respectively.



dS
dt = ∆+ ρS (t)Q (t)− (αE (t) + φ I (t))S (t)− µS (t)− (u1(t) + u2(t))S(t)
dE
dt = αS (t)E (t)− (β1 + β2 + γ3)E (t)− µE (t)
dQ
dt = γ3E (t)− ρS (t)Q (t)− γ4Q (t)− µQ (t)− u1Q(t)
dM
dt = β1E (t) + γ4Q (t)− γ1M (t)− µM (t)− u2(t)M(t)
dA
dt = β2E (t)− γ2A (t)− µA (t)− u2(t)A(t)
dI
dt = γ1M (t) + γ2A (t) + φS (t) I (t)− (δ + ψ1 + ψ2 + µ) I (t)− u2(t)I(t)
dH
dt = δ I (t)− (λ1 + λ2 + µ)H (t)− u3(t)H(t)
dR
dt = λ2H (t) + ψ1 I (t)− µR (t) + u1(t)(S(t) +Q(t)) + u2(S(t)

+M(t) +A(t) + I(t)) + u3H(t)
dD
dt = λ1H (t) + ψ2 I (t)

(2)
with initial conditions, S(0) = S0, E(0) = E0, Q(0) = Q0, M(0) = M0, A(0) =
A0, I(0) = I0, H(0) = H0, R(0) = R0, D(0) = D0.

The exhibited model (2) is an optimal control model and the set of control
variables (u1(t), u2(t), u3(t)) ∈ U is Lebesgue measurable, where

U = {(u1(t), u2(t), u3(t)) : 0 ≤ ai ≤ ui ≤ bi ≤ 1}, ∀t ∈ [0, tf ].

Considering these three control variables, the cost functional of the problem
is given by

Minimize J(u) =
∫ tf

0

(M(t) +A(t) + I(t) +
C1

2
u1

2 +
C2

2
u2

2 +
C3

2
u3

2)dt (3)

where C1, C2 and C3 are the weight parameters of the cost functional. This
indicates that we aim to minimize the average number of asymptomatic popula-
tions, symptomatic populations and infected populations of the model as well as
the cost of the three control measures. Hence, with the help of cost functional



638 M.H.A. Biswas, M.S. Khatun, M.A. Islam, S. Mandal, A.K. Paul and A. Ali

(3), we can reformulate model (2) as an optimal control problem in Lagrange
form:

(POC)


Minimize J(x, u) =

∫ tf
0
L(t, x(t), u(t))dt

Subject to
ẋ = f(x(t)) + g(x(t))u(t), ∀t ∈ [0, tf ]
u(t) ∈ U, ∀t ∈ [0, tf ]
x(0) = x0

 (4)

where, x(t) =



S (t)

E(t)

Q(t)

M(t)

A(t)

I(t)

H(t)

R(t)

D(t)



, g(x) =



−S −S 0

0 0 0

−Q 0 0

0 M 0

0 −A 0

0 −I 0

0 0 −H
S +Q S +M +A+ I H

0 0 0



,

f(x) =



∆+ ρS (t)Q (t)− (αE (t) + φ I (t))S (t)− µS (t)

αS (t)E (t)− (β1 + β2 + γ3)E (t)− µE (t)

γ3E (t)− ρS (t)Q (t)− γ4Q (t)− µQ (t)

β1E (t) + γ4Q (t)− γ1M (t)− µM (t)

β2E (t)− γ2A (t)− µA (t)

γ1M (t) + γ2A (t) + φS (t) I (t)− (δ + ψ1 + ψ2 + µ) I (t)

δ I (t)− (λ1 + λ2 + µ)H (t)

λ2H (t) + ψ1 I (t)− µR (t)

λ1H (t) + ψ2 I (t)



,

u(t) =

 u1(t)

u2(t)

u3(t)

 and the integrand of the cost functional is denoted by

L(t, x, u) =M(t) +A(t) + I(t) + C1

2 u1
2 + C2

2 u2
2 + C3

2 u3
2.

3. Characterization of Optimal Control

In the cost functional (3), Pontryagin’s Maximum Principle is applied to the
Hamiltonian (H) in order to attain the necessary conditions for the optimal con-
trol problem (4). According to Pontryagin’s Maximum Principle, the standard
Hamiltonian function H with respect to (u1(t), u2(t), u3(t)) can be defined as
follows [20]:
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H(t, x(t), u(t), p(t), λ) = ⟨p(t), f(x(t)) + g(x(t))u(t)⟩ − λL(x(t), u(t)), λ ∈ R
where, p(t) = (pS , pE , pQ, pM , pA, pI , pH , pR, pD) ∈ ℜ9 denotes the adjoint vari-
ables.

Let us assume that the pair (x∗, u∗) is the optimal solution of the above
optimal control problem (4). Then, the maximum principle states the existence
of a scalar parameter λ0 ≥ 0, an absolutely continuous function p(t), such that
the following conditions are satisfied:

(i) max {|p(t)| : t ∈ [0, tf ]}+ λ > 0;

(ii) p′
(t) = λLx[t]− ⟨p[t], fx[t] + gx[t]u

∗(t)⟩;
(iii) p(t) = (0, 0, 0, 0, 0, 0, 0, 0, 0);
(iv) H(x∗(t), u∗(t), p(t)) = maxu{H(x∗(t), u∗(t), p(t))}, here a1 ≤ u1 ≤ b1,

a2 ≤ u2 ≤ b2, a3 ≤ u3 ≤ b3,
where time argument [t] denotes the evaluation along with the optimal solution.

We write p(t) = (pS , pE , pQ, pM , pA, pI , pH , pR, pD), x∗(t) = (S∗, E∗, Q∗,M∗,
A∗, I∗,H∗, R∗, D∗), and u∗(t) = (u1

∗, u2
∗, u3

∗). Then, from equation (ii) adjoint
equations in normal form (i.e.λ = 1) are explicitly given by
pS

′
= αpSE

∗ − ρpSQ
∗ + φpSI

∗ + µpS + pS(u1
∗ + u2

∗) − αpEE
∗ + ρpQQ

∗ −
φpII

∗ − pR(u1
∗ + u2

∗)
= (αE∗−ρQ∗+φI∗+µ+u1

∗+u2
∗)pS−αpEE∗+ρpQQ

∗−φpII∗−pR(u1∗+u2∗)
pE

′
= αpSS

∗ − αpES
∗ + pE(β1 + β2 + γ3) + µpE − γ3pQ − β1pM − β2pA

= αpSS
∗ + pE(β1 + β2 + γ3 − αS∗) + µpE − γ3pQ − β1pM − β2pA

pQ
′
= ρpQS

∗ − ρpSS
∗ + γ4pQ + µpQ − γ4pM − u1

∗pQ
= (ρS∗ + γ4 + µ− u1

∗)pQ − ρpSS
∗ − γ4pM

pM
′
= 1 + γ1pM + µpM − γ1pI + u2

∗pM
= 1 + (γ1 + µ+ u2

∗)pM − γ1pI
pA

′
= 1 + γ2pA + µpA − γ2pI + u2

∗pA
= 1 + (γ2 + µ+ u2

∗)pA − γ2pI
pI

′
= 1+φpSS

∗−φpIS∗+ pI(δ+ψ1+ψ2)+µpI − δpH −ψ1pM −ψ2pD +u2
∗pI

= 1 + φpSS
∗ + pI(δ + ψ1 + ψ2 + µ+ u2

∗ − φS∗)− δpH − ψ1pM − ψ2pD
pH

′
= pS(λ1 + λ2 + µ+ u3

∗)− λ2pR − λ1pD
pR

′
= µpR with transversality condition pi(tf ) = 0, i = 1, 2, 3, 4, 5, 6, 7, 8, 9.

3.1. Existence of the Optimal Controls. In the present model, (x∗, u∗) is
the optimal pair where x∗ denotes the state variables and u∗ represents control
variables. So, in order to prove the existence of the optimal control, we have to
show the existence of the state as well as the existence of the control variables
[20].

3.1.1. Existence of the State Variables. The state equations in model (1)
with the initial conditions can be written in the following form

S
′
= ∆+ ρS (t)Q (t)− (αE (t) + φ I (t))S (t)− µS (t) + (0)M (t) (5)

+ (0)A (t) + (0) I (t) + (0)H (t) + (0)R (t) + (0)D (t)

E
′
= αS (t)E (t)− (β1 + β2 + γ3)E (t)− µE (t) + (0)Q (t) + (0)M (t)
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+ (0)A (t) + (0) I (t) + (0)H (t) + (0)R (t) + (0)D (t)

Q
′
= (0)S (t) + γ3E (t)− ρS (t)Q (t)− γ4Q (t)− µQ (t) + (0)M (t)

+ (0)A (t) + (0) I (t) + (0)H (t) + (0)R (t) + (0)D (t)

M
′
= (0)S (t) + β1E (t) + γ4Q (t)− γ1M (t)− µM (t) + (0)A (t)

+ (0) I (t) + (0)H (t) + (0)R (t) + (0)D (t)

A
′
= (0)S (t) + β2E (t) + (0)Q (t) + (0)M (t)− γ2A (t)− µA (t)

+ (0) I (t) + (0)H (t) + (0)R (t) + (0)D (t)

I
′
= γ1M (t) + (0)E (t) + (0)Q (t) + γ2A (t) + φS (t) I (t)

− (δ + ψ1 + ψ2 + µ) I (t) + (0)H (t) + (0)R (t) + (0)D (t)

H
′
= (0)S (t) + (0)E (t) + (0)Q (t) + (0)M (t) + (0)A (t) + δ I (t)

− (λ1 + λ2 + µ)H (t) + (0)R (t) + (0)D (t)

R
′
= (0)S (t) + (0)E (t) + (0)Q (t) + (0)M (t) + (0)A (t) + λ2H (t)

+ ψ1 I (t)− µR (t) + (0)D (t)

D
′
= (0)S (t) + (0)E (t) + (0)Q (t) + (0)M (t) + (0)A (t) + λ1H (t)

+ ψ2 I (t) + (0)R (t) + (0)D (t) .

Let N(t) = S(t) + E(t) +Q(t) +M(t) +A(t) + I(t) +H(t) +R(t) +D(t)
So that,

N
′
(t) = S

′
(t) + E

′
(t) +Q

′
(t) +M

′
(t)A

′
(t)I

′
(t) +H

′
(t) +R

′
(t) +D

′
(t) (6)

Now from all the above equations in (5) and equation (6), we can write
N

′
(t) = ∆− µN(t) + (γ1 − γ3)M(t)

=⇒ N
′
(t) ≤ ∆− µN(t)

∴ N(t) ≤ ∆
µ + (N0 − ∆

µ )e
−µt.

Here, N(t) is the total number of populations.

So we have, N(t) ≤ ∆
µ + (N0 − ∆

µ )e
−µt = V1 ∈ R+and lim

t→∞
supN(t) ≤ V1

which gives, (S(t), E(t), Q(t),M(t), A(t), I(t),H(t), R(t), D(t)) ≤ V1, as t→ ∞.
Then, we can rewrite equation (5) in the following form:

ϕt = Gϕ+ F (ϕ) (7)
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where ϕ =



S (t)

E(t)

Q(t)

M(t)

A(t)

I(t)

H(t)

R(t)

D(t)



, ϕt =



S
′
(t)

E
′
(t)

Q
′
(t)

M
′
(t)

A
′
(t)

I
′
(t)

H
′
(t)

R
′
(t)

D
′
(t)



, F (ϕ) =



ρSQ− (αE + φI)S

αSE

−ρSQ
0

0

φIS

0

0

0



, and

G =



−µ 0 0 0 0 0 0 0 0

0 k2 0 0 0 0 0 0 0

0 γ3 k3 0 0 0 0 0 0

0 β1 γ4 k4 0 0 0 0 0

0 β2 0 0 k5 0 0 0 0

0 0 0 γ1 γ2 k6 0 0 0

0 0 0 0 0 δ k7 0 0

0 0 0 0 0 ψ1 λ2 −µ 0

0 0 0 0 0 ψ2 λ1 0 0


where, k2 = −(β1+β2+γ3+µ), k3 = −(γ4+µ), k4 = −(γ1+µ), k5 = −(γ2+µ),

k6 = −(δ + ψ1 + ψ2 + µ), k7 = −(λ1 + λ2 + µ).

Now,

F (ϕ1)− F (ϕ2) =



ρS1Q1 − (αE1 + φI1)S1

αS1E1

−ρS1Q1

0

0

φI1S1

0

0

0



−



ρS2Q2 − (αE2 + φI2)S2

αS2E2

−ρS2Q2

0

0

φI2S2

0

0

0


(8)

Equation (7) is a non-linear form with a bounded co-efficient.
We consider D(ϕ) = ϕt = Gϕ + F (ϕ). For the existence of optimal control and



642 M.H.A. Biswas, M.S. Khatun, M.A. Islam, S. Mandal, A.K. Paul and A. Ali

optimality system, the boundedness of solution of the system for finite time is
needed and we assume for u ∈ U, there exists a bounded solution.

|F (ϕ1) − F (ϕ2)| = |ρ(S1Q1 − S2Q2) + α(E2S2 − E1S1) + ϕ(I2S2 − I1S1) +
|α(E1S1 − E2S2) + ρ(S1Q1 − S2Q2) + ϕ(I1S1 − I2S2)|
≤ 2ρ|(S1Q1 − S2Q2)|+ 2α|(E2S2 − E1S1|) + 2ϕ|(I2S2 − I1S1)|
≤M |ϕ1 − ϕ2|
where, M is a constant. Also, we get
|D(ϕ1)−D(ϕ2)| ≤ ||B|||ϕ1 − ϕ2|+M |ϕ1 − ϕ2| ≤ V |ϕ1 − ϕ2|.
where, V = max(M, ||B||) <∞.
Thus, it follows that the function D is uniformly Lipschitz continuous.
From the definition of the control U(t) and the restriction on S,E,Q,M,A, I and
D > 0, we see that asolution of the system (7) exists.

3.1.2. Existence of the Control Variables. Now, by applying Pontryagin’s
Maximum Principle [39] we have the following Theorem 3.1 and by proving the
theorem, we show the existence of controls.

Theorem 3.1. There exists optimal control (u1∗, u2∗, u3∗) that minimizes the
performance index J(x, u) over U given by

u1
∗ = max

[0,tf ]

{
0,min

(
1,

(PS − PR)S
∗ + PQQ

∗

C1

)}
,

u2
∗ =

max
[0,tf ]

{
0,min

(
1, (PS−PR)S∗+(PM−PR)M∗+(PA−PR)A∗+(PI−PR)I∗

C2

)}
and u3∗ = max

[0,tf ]

{
0,min

(
1,

(PH − PR)H
∗

C3

)}
Proof. According to optimality conditions, we have
∂H

∂u∗1
= C1u

∗
1−PSS

∗−PQQ
∗+PRS

∗ = 0 =⇒ u∗1 =
(PS − PR)S

∗ + PQQ
∗

C1
= u1

∂H

∂u∗2
= C2u

∗
2 − PSS

∗ − PMM
∗ − PAA

∗ − PII
∗ + PR(S

∗ +M∗ +A∗ + I∗) = 0

=⇒ u∗2 =
(PS − PR)S

∗ + (PM − PR)M
∗(PA − PR)A

∗(PI − PR)I
∗

C2
= u2

∂H

∂u∗3
= C3u

∗
3 − PHH

∗ − PRH
∗ = 0 =⇒ u∗3 =

(PH − PR)H
∗

C3
= u3

According to the property of U , the three controls (u∗1, u2
∗, u3

∗) are bounded
with upper bound 1 and lower bound 0.

u∗1(t) =


0 if u∗1 ≤ 0
(PS−PR)S∗+PQQ∗

C1
if 0 < u∗1 ≤ 1

1 if u∗1 ≥ 1
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This can be written in compact form as
u∗1(t) = max

[0,tf ]

{
0,min

(
1,

(PS−PR)S∗+PQQ∗

C1

)}
.

Similarly,

u∗2(t) =


0 if u∗2 ≤ 0
(PS−PR)S∗+(PM−PR)M∗(PA−PR)A∗(PI−PR)I∗

C2
if 0 < u∗2 ≤ 1

1 if u∗2 ≥ 1

In the same way, this can be written in compact form as
u∗2(t) =

max
[0,tf ]

{
0,min

(
1, (PS−PR)S∗+(PM−PR)M∗+(PA−PR)A∗+(PI−PR)I∗

C2

)}
Again,

u∗3(t) =


0 if u∗3 ≤ 0
(PH−PR)H∗

C3
if 0 < u∗3 ≤ 1

1 if u∗3 ≥ 1

which can be written in compact form as

u∗3(t) = max
[0,tf ]

{
0,min

(
1,

(PH − PR)H
∗

C3

)}
.

Thus, we get the optimal solutions as (u∗1, u
∗
2, u

∗
3) =

max
[0,tf ]

{
0,min

(
1,

(PS−PR)S∗+PQQ∗

C1

)}
max
[0,tf ]

{
0,min

(
1, (PS−PR)S∗+(PM−PR)M∗+(PA−PR)A∗+(PI−PR)I∗

C2

)}
max
[0,tf ]

{
0,min

(
1, (PH−PR)H∗

C3

)}


This completes the proof of the Theorem 3.1. □

4. Numerical Simulations

In this section, we have used Open-OCL [28] solver to perform numerical sim-
ulations of the optimal control model (1) in MATLAB programming language.
In order to carry out numerical solutions of the model, we use a set of parameter
values which are shown in Table 1. We perform numerical simulations to com-
pare the results of our model with the real data obtained from several reports
specifically Worldometer [16].

We use a set of suitable parameter values. The description of all the pa-
rameters with the estimated values used in the model (2) is presented in Table
1. We have considered the initial conditions S0 = 100 × 105, E0 = 50 × 105,
Q0 = 60 × 105, M0 = 70 × 104, A0 = 40 × 104, I0 = 60 × 104 H0 = 20 × 104,
R0 = 40× 104 and D0 = 5× 103. Firstly, we simulate the model (2) considering
the initial values and all other parameters that are shown in Table 1.



644 M.H.A. Biswas, M.S. Khatun, M.A. Islam, S. Mandal, A.K. Paul and A. Ali

Table 1. Description and estimation of the parameters of
model (1)

Symbols Descriptions Values Units Sources
∆ Recruitment rate of the susceptible individuals 0.0185 day−1 [20, 22]
α Exposed rate of the individuals 0.153 day−1 [22]
β1 Effective rate of exposed becoming symptomatic 0.138 Dimensionless [22]
β2 Effective rate of exposed becoming asymptomatic 0.013 Dimensionless [46]
γ1 Probability of being infected from symptomatic 0.025 day−1 [48]
γ2 Probability of being infected from asymptomatic 0.015 day−1 [6]
φ Probability of being infected from susceptible 1.56 day−1 [6]
γ3 Quarantined rate from exposed individuals 0.25 Dimensionless [16, 17]
γ4 Effective rate from quarantined to symptomatic 0.02 day−1 [16, 17]
ρ Effective rate from quarantined to susceptible 0.025 day−1 [20, 22]
δ Hospitalized rate of the infected individuals 0.4127 day−1 [46, 48]
λ1 Death rate of the hospitalized individuals 0.0427 day−1 [46, 48]
λ2 Rate of recovery from hospitalized individuals 0.8971 day−1 [6]
ψ1 Effective recovery rare using self-immunity system 0.5887 day−1 [46, 48]
ψ2 Death rate of the infected individuals 0.0412 day−1 [48]
µ Natural death rate 0.0078 day−1 [48]

Figure 2. Numerical simulation of the model (2) when no con-
trol measures are applied to the system.

Also, we have performed the numerical simulations for time interval t ∈
[0, 120] for 120 days. For convenient, on t-axis, we consider 1 unit is equiva-
lent to 6 days in Figures 2-5 and 1 unit is equivalent to 2 days in Figures 6-11.
We have considered three control variables: u1(t) as the control of mass testing
and tracing or identifying the COVID-19 positive patients, u2(t) as the control
of maintaining physical distancing and u3(t) as the control of effective treatment
for corresponding symptoms. The result of simulation of the combined classes
without optimal control model (2) is presented in Figure 2.
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Figure 3. Numerical simulation of susceptible, symptomatic,
asymptomatic, infected, hospitalized and recovered individuals
when both the three control measures are activated.

We observe from Figure 2 that when no optimal controls are applied to the
system then symptomatic, asymptomatic, infected and hospitalized individuals
are increased. As a result, the number of death people is also increased due
to this pandemic outbreak. Considering the optimal controls into account, the
behavior of the state trajectories is simulated in the Figure 3 and the control
trajectories in Figure 4.

We observe from Figures 3 and 4 that when optimal controls are applied to
the system then infected individuals are decreased whereas recovered individ-
ual is increased tremendously till the end of the period, at the same time the
overall cost of all the controls u1, u2, u3 are minimized. The model (2) shows
the significant result for considering the asymptomatic individuals which have
remarkably influenced on the spread of COVID-19. After employing the optimal
controls (i.e. mass testing and tracing among the individuals and maintaining
the physical distancing as well as wearing mask, the asymptomatic individuals
are decreased surprisingly as a result recovered individuals are also increased
from this pandemic outbreak. At the same time the cost of the management of
mass testing system and cost of buying mask is minimized. On the other hand,
the cost of the control u3 (i.e. treatment for corresponding symptoms and taking
immune boosting foods and drugs to develop self-immunity system) is maximum
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Figure 4. Illustration of the three control measures.

at the beginning of the period and then decreased after day by day that is our
objective to minimize the cost of the controls.

Now, we solve the model numerically for the classes of susceptible, infected
and recovered individuals to show how the changes in these states due to applying
mass testing control. The result in this case is presented in Figure 5.

Figure 5 shows the state trajectories of susceptible, asymptomatic, infected
and recovered individuals in the present of mass testing and tracing (u1) and
maintaining physical distancing (u2) as optimal control. We have observed that
from the beginning period the number of infected people is increasing but after
performing mass testing and tracing, it leads to quick identification of COVID-
19 and immediate isolation to prevent spread. It is also helped to trace anyone
who came into contact with infected individuals and quickly quarantined. We
also investigate that the infected population is extremely decreased due to de-
cay of asymptomatic individuals. An asymptomatic positive patient does not
exhibit the symptoms of COVID-19 outbreak but can transmit the virus to oth-
ers susceptible individuals rapidly. As a result, the symptomatic and infected
population is extensively diminished and recovered individuals are increased that
World Health Organization (WHO) has highlighted the eventual significant of
mass testing. They suggest that three things are important: tracing positive pa-
tient, identifying their household and identifying the people who are contacted
and quarantining them minimum fourteen days. The cost of the management
of tracing software or mass testing system is the largest value at the beginning
period and then it is remained constant. After implementing the tracing and
testing, the cost of the control (u1) is decreased till at the end of the period.
Due to managing the cost of maintaining physical distancing and wearing mask,
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Figure 5. The asymptomatic and infected individuals are sig-
nificantly decreased and recovered individuals are increased
due to maintain physical distance and applying mass testing
(u1 ̸= 0, u2 ̸= 0, u3 = 0) as optimal control.

the cost of the control (u2) is initially boomed but gradually reduced day by
day.

Then we run the program for the infected and recovered individuals to show
the effect of quarantined individuals, keeping the parameters value same as be-
fore. The result is shown in Figure 6.

In Figure 6, we see the variation of symptomatic, infected and recovered
individuals with time due to applying mass testing (u1) as optimal control. It
is easy to understand that the infected individual is significantly decreased due
to increase of quarantined rate. As a result, recovered individuals are increased
extensively. Thus, after the implementation of mass testing or tracing (u1)
and isolated the COVID-19 positive patient, the symptomatic individuals are
extensively decreased as a result infected individuals are also decreased and
recovered individuals are increased surprisingly.

Now, we solve the program to see the variation for the susceptible class after
using optimal control (u1). The result is shown in Figure 7.

Figure 7 shows the optimal trajectories of the susceptible individuals with
time. We observe that the susceptible individuals are extremely decreased due
to apply the optimal control mass testing and tracing to the community. Next,
we solve the model to see the variation for the symptomatic individuals after
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Figure 6. Dynamics of quarantined, symptomatic, infected
and recovered individuals where the symptomatic individuals
are significantly decreased as a result recovered individuals
are increased surprisingly due to applying optimal controls u1
whereas u2 = 0, u3 = 0.

Figure 7. The susceptible individuals are dramatically de-
creased due to apply the optimal control mass testing and trac-
ing (u1) .

using optimal control (u2), keeping the parameters value same as before. The
result is presented in Figure 8.
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Figure 8. Variation of symptomatic individuals by using op-
timal control (u2) where the symptomatic individuals is signif-
icantly decreased due to maintaining social distancing.

Figure 8 represents the variation of symptomatic individuals with time due to
maintain physical and social distance and other effects are not considered. We
observe that the symptomatic population is extremely decreased after applying
(u2) as optimal control. Because, we all are known that coronavirus is primarily
spread between people during close contact, often via small droplets produced
by coughing, sneezing, or talking. These small droplets have transmitted when a
person is in close contact (within 1 m) with someone who has respiratory symp-
toms. Thus, the symptomatic population is significantly decreased as a result
recovered individuals increased due to maintain physical and social distance at
least one meter from COVID-19 positive people as a protective measure.

Now, we run the program to see the variation for the asymptomatic class after
using optimal control u1 and u2. The result is shown in Figure 9.

We understand easily from Figure 9 that the variation of asymptomatic in-
dividuals with time due to apply mass testing and maintaining physical and
social distance. We observe that the asymptomatic population is extremely de-
creased after applying u1 and u2 as optimal control. Because an asymptomatic
positive patient does not exhibit the symptoms of COVID-19 outbreak but can
transmit the virus to others rapidly. Thus, after identifying the asymptomatic
individuals through mass testing and tracing who’ve contacted with them and
maintaining physical and social distance, the asymptomatic population is exten-
sively decreased as a result infected population is also decreased and recovered
individuals are increased tremendously.

Finally, we run the program to see the variation for the infected individuals
after using optimal control u2, keeping the parameters value same as before.
The result in this case is given in Figure 10.

From Figure 10, we observe the variation of infected individuals with time due
to maintain physical and social distance and other effects are not considered.
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Figure 9. Variation of asymptomatic individuals by using op-
timal control where the asymptomatic population is signifi-
cantly decreased due to apply mass testing and maintaining
social distancing (u1andu2).

Figure 10. Variation of infected individuals by using optimal
control where the infected population is significantly decreased
due to maintaining social distancing.

At present, there are no specific vaccines are invented for COVID-19. If we
controlled and reduced the symptomatic and asymptomatic population from
this pandemic situation through maintaining physical distance as well as social
distance from the sick people who has respiratory symptoms and spread small
droplets produced by coughing, sneezing or talking as a preventive measure then
the infected population is significantly decreased as a result number of recovered
individuals also increased surprisingly from this outbreak.
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Figure 11. Variation of recovered individuals by using opti-
mal control where the recovered individuals are increased sur-
prisingly due to apply the vaccine or treatment (u3) as optimal
control.

Next, we solve the model for the class of hospitalized and recovered individuals
to show how the change occurs in the recovered individuals using treatment as
optimal control. The result in this case is given in Figure 11.

From Figure 11, it is observed that the hospitalized population is decreased
due to applying treatment based on the patient’s clinical condition and devel-
oping self-immunity system. There are no specific vaccines or medicines for
COVID-19 still nowadays, so, to reduce the infected individuals from this out-
break and increased recovered individuals, self-immunity system must be devel-
oped for all the population of a community and the symptoms can be treated
and treatment through clinical trials. For that reason, it is mandatory for each
of the individuals to develop a strong immune system through indoor and out-
door activities, by trying muscle strength training, by eating a diet high in fruits
and vegetables with minimizing the consumption of red and processed meats.

5. Conclusions

In this contribution, a mathematical model on transmission dynamics of
COVID-19 is presented introducing three control variables such as mass testing
and tracing of COVID-19 positive patients, maintenance of physical distancing
and effective treatment for corresponding symptoms with taking immune boost-
ing foods and drugs to develop self-immunity system. We have used Pontryagin
maximum principle for the existence of the state variables, objective functional
and characterization of the optimal control to minimize the number of sympto-
matic, asymptomatic and infected individuals with minimum cost of the controls.
The major findings of this study are given below:
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• When no preventive control measure is applied, symptomatic, asymp-
tomatic and infected individuals are continuously increased due to this
highly infectious pandemic disease.

• After implementation of the optimal control u1(t) (mass testing and trac-
ing) in the community, the susceptible, exposed and infected population
is extensively decreased as a result recovered individuals are increased.
Moreover, WHO has encouraged to all of the people for mass testing
and tracing of COVID-19 positive patients, at the same time identifying
their household and quarantined them.

• When the optimal control u2(t) (maintenance of physical distancing and
wearing face mask) is applied, the infected individuals are significantly
decreased due to increase of maintaining physical distancing and wearing
face mask with high quarantined rate. As a result, recovered individ-
uals are increased extensively. Since an asymptomatic (but COVID-
19 positive patient) individual does not show the symptoms of corona
transmission but can spread the virus to others that leads to increase
the infected individuals rapidly. Hence after using the optimal control
u2(t), the asymptomatic individuals are extensively decreased as a result
the infected individuals are also decreased so that recovered individuals
are increased quickly.

After execution the optimal control u3(t) (efficacious treatment for corre-
sponding symptoms), the hospitalized individuals are decreased with the increase
of recovered individuals. In this pandemic situation, it is mandatory for each of
the individuals to develop a strong immune system through indoor and outdoor
activities, by trying muscle strength training, by eating fruits and vegetables.
Our study (the dynamics of the optimal control in Figures 2-4) also ensure that
the overall cost of the optimal control is minimized with the reduction of infected
individuals.
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