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ROUGH ∆I-STATISTICAL CONVERGENCE
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Abstract. In this study, we examine rough ∆I-statistical convergence for

difference sequences as an extension of rough convergence. We investigate
the set of rough ∆I-statistical limit points of a difference sequence and

analyze the results with proofs.
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1. Introduction and Background

Fast [1] examined the statistical convergence of a real number sequence. Some
beneficial conclusions on this topic can be found in [2, 3, 4, 5, 6, 7, 8]. Kostyrko
et al. [9] studied ideal convergence as a generalization of statistical convergence.
Kostyrko et al. [10] researched some features of I-convergence. Savaş and Das
[11] investigated I-statistical convergence. Later on it was studied by some
researchers. For details, see [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

Rough convergence was firstly given by Phu [26] in finite-dimensional normed
spaces. Phu [27] investigated rough continuity of linear operators and denoted
that under the assumption of X and Y are normed spaces, every linear operator
f : X → Y is rough continuous at every point X. Considering the results in [26],
Phu [28] studied some properties of rough convergence in infinite-dimensional
normed spaces. Aytar [29] defined rough statistical convergence. In another
study [30], he worked rough limit set and the core of a real sequence. The gener-
alization of rough statistical convergence which is known as rough I-convergence
was given by Pal et al. [31]. Recently, Dündar and Çakan [32, 33, 34] investi-
gated the rough I-convergence and examined the notions of rough convergence
and rough I2-convergence of a double sequence. Rough I-statistical conver-
gence was firstly studied by Savaş et al [35]. In another study, Malik et al. [36]
examined significant properties of this kind of convergence. Also, Arslan and
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Dündar [37, 38] introduced rough convergence in 2-normed spaces. Demir and
Gümüş [39] studied rough statistical convergence of difference sequences. Rough
convergence, rough statistical convergence and ∆I-convergence for difference se-
quences and for double difference sequences have been investigated. For details,
see [40, 41, 42, 43, 44, 45].

In this study, our aim is to define the rough ∆I-statistical convergence for
difference sequences and proved some significant theorems. As can be seen from
the title of the article, there are four important notions that will form the ba-
sis of this article. These are; statistical convergence, I-convergence, difference
sequences and rough convergence.

2. Definitions and notations

In this section, some significant definitions and notations are given. (See
[37, 38, 29, 30, 32, 33, 34, 45, 26, 27, 28]).

During the study, r denotes a nonnegative real number and Rn indicates the
real n-dimensional space with the norm ∥.∥. Think a sequence x = (xk) ⊂ X =
Rn.

The sequence x is named to be r-convergent to x∗, showed by xk
r−→ x∗ on

condition that

∀ε > 0 ∃iε ∈ N : k ≥ iε ⇒ ∥xk − x∗∥ < r + ε.

The set

LIMrx := {x∗ ∈ Rn : xk
r−→ x∗}

is given the r-limit set of the sequence x. If LIMrx ̸= ∅ holds, then the x = (xi)
is called r-convergent. Here, r indicates the convergence degree of the sequence
x. For r = 0, we have the ordinary convergence.

A family of sets I ⊆ 2N is named an ideal iff
(i) ∅ ∈ I,
(ii) for each A,B ∈ I we have A ∪B ∈ I,
(iii) for each A ∈ I and each B ⊆ A we have B ∈ I.
An ideal is called non-trivial if N /∈ I and non-trivial ideal is called admissible

if {n} ∈ I for each n ∈ N.

A family of sets F ⊆ 2N is named a filter in N iff
(i) ∅ /∈ F ,
(ii) for each A,B ∈ F we have A ∩B ∈ F ,
(iii) for each A ∈ F and each B ⊇ A we have B ∈ F .

If I ⊆ 2N is a nontrivial ideal, then the family of sets

F (I) = {P ⊂ N : ∃K ∈ I : P = N \ K}

is a filter of N and it is named as the filter connected with the ideal I.
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Mursaleen et al. [20] defined I-statistical cluster point of real number se-
quence.

Theorem 2.1. If an I-statistically bounded sequence has one cluster point then
it is I-statistically convergent.

A sequence x = (xk) is called to be r-I-convergent to x∗ with the roughness

degree r, demonstrated by xk
r−I−→ x∗ provided that

{k ∈ N : ∥xk − x∗∥ ≥ r + ε} ∈ I

for every ε > 0. Additionally, we write xk
r−I−→ x∗ iff the ∥xk − x∗∥ < r+ ε holds

for every ε > 0 and almost all k.
(∆xk) is called to be rough I-convergent to x∗ or r-I-convergent to x∗ if for

any ε > 0

{k ∈ N : ∥∆xk − x∗∥ ≥ r + ε} ∈ I.

In this case x∗ is named the r-I-limit of (∆xk) and we indicate it by ∆x
r−I−→ x∗.

3. MAIN RESULTS

Definition 3.1. A sequence (∆xk) in X is said to be rough I-statistically con-

vergent to x∗ or r-I-statistically convergent to x∗, demonstrated by ∆x
r−I−st−→

x∗, provided that{
n ∈ N :

1

n
|{k ≤ n : ∥∆xk − x∗∥ ≥ r + ε}| ≥ δ

}
∈ I

for any ε > 0 and δ > 0, or correspondingly we can say

I − st lim sup ∥∆xk − x∗∥ ≤ r.

For r = 0, we have ∆I-statistical convergence. So, our main attention is when
r > 0.

If I is an admissible ideal, then usual rough statistical convergence for a
difference sequence (∆xk) implies rough I-statistical convergence.

The idea of rough I-statistical convergence for a difference sequence can be
explained with the following example.

Example 3.2. As an example presume that the sequence (∆yk) is I-statistically
convergent which can not be measured absolutely. We can select an approxi-
mated sequence (∆xk) satisfying {k ∈ N : ∥∆xk −∆yk∥ > r} ∈ I. Then, I-
statistically convergence of sequence (∆xk) is not assured, but the inclusion,{

n ∈ N : 1
n |{k ≤ n : ∥∆xk − x∗∥ ≥ r + ε}| ≥ δ

}
⊆

{
n ∈ N : 1

n |{k ≤ n : ∥∆yk − x∗∥ ≥ ε}| ≥ δ
}

holds, so the sequence (∆xk) is r-I-statistically convergent.
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Generally the r-I-statistical limit of a sequence may not be unique for r > 0.
We identify the set of all r-I-statistical limit of (∆xk) with

I − st− LIMr
(∆xk)

=
{
x∗ ∈ X : ∆xk

r−I−st−→ x∗

}
.

If I − st − LIMr
(∆xk)

̸= ∅ holds, then the sequence (∆xk) is called r-I-
statistically convergent. It is obvious that if I−st−LIMr

(∆xk)
̸= ∅ for a sequence

(∆xk), then we get

I − st− LIMr
(∆xk)

= [I − st− lim sup (∆xk)− r, I − st− lim inf (∆xk)− r] .

As seen in the example below, there is an unbounded difference sequence
which is not rough convergence but it can be r-I-statistically convergent.

Example 3.3. Let I be an admissible ideal and A be an infinite set such that
A ∈ I. Take the difference sequence

(∆xk) =

{
(−1)k, if k /∈ A,
k, if k ∈ A.

It is clear that (∆xk) is unbounded and r-I-statistically convergent. Because,

I − st− LIMr
(∆xk)

=

{
∅, if r < 1,
[1− r, r − 1] , otherwise.

Definition 3.4. A sequence (∆xk) is called to be I-statistically bounded if
there consists a number K such that{

n ∈ N :
1

n
|{k ≤ n : ∥∆xk∥ > K}| > δ

}
∈ I.

Theorem 3.5. For a sequence (∆xk),

diam
(
I − st− LIMr

(∆xk)

)
≤ 2r.

Generally diam
(
I − st− LIMr

(∆xk)

)
has no smaller bound.

Proof. Presume that diam
(
I − st− LIMr

(∆xk)

)
> 2r. Then, there are y, z ∈ I-

st-LIMr
(∆xk)

such that ∥y − z∥ > 2r. Now select ε > 0 so that ε ∈
(
0, ∥y−z∥

2 − r
)
.

Let

A1 = {k ∈ N : ∥∆xk − y∥ ≥ r + ε} ∈ I
and

A2 = {k ∈ N : ∥∆xk − z∥ ≥ r + ε} ∈ I.
Then, we have

1

n
|{k ≤ n : k ∈ A1 ∪A2}| ≤

1

n
|{k ≤ n : k ∈ A1}|+

1

n
|{k ≤ n : k ∈ A2}|
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and by the feature of I-convergence we get

I − limn→∞
1
n |{k ≤ n : k ∈ A1 ∪A2}| ≤ I − limn→∞

1
n |{k ≤ n : k ∈ A1}|

+I − limn→∞
1
n |{k ≤ n : k ∈ A2}| = 0.

Thus, we get {
n ∈ N :

1

n
|{k ≤ n : k ∈ A1 ∪A2}| ≥ δ

}
∈ I

for all δ > 0. Let

M =

{
n ∈ N :

1

n
|{k ≤ n : k ∈ A1 ∪A2}| ≥

1

2

}
.

Obviously, M ∈ I. Now, select n0 ∈ N \ M. Then

1

n0
|{k ≤ n0 : k ∈ A1 ∪A2}| <

1

2
.

So
1

n0
|{k ≤ n0 : k /∈ A1 ∪A2}| ≥ 1− 1

2
=

1

2

i.e., {k : k /∈ A1 ∪A2} is a nonempty set. Take k0 ∈ N such that k0 /∈ A1 ∪ A2.
Then k0 ∈ Ac

1 ∩Ac
2 and hence ∥∆xk0

− y∥ < r + ε and ∥∆xk0
− z∥ < r + ε. So

∥y − z∥ ≤ ∥∆xk0
− y∥+ ∥∆xk0

− z∥ < 2 (r + ε) < ∥y − z∥ ,
As we can see this is a absurd. Thus,

diam
(
I − st− LIMr

(∆xk)

)
≤ 2r.

For evidence of the second part, think a sequence (∆xk) such that I − st −
lim∆xk = x∗. Let ε > 0 and δ > 0 then, we get

A =

{
n ∈ N :

1

n
|{k ≤ n : ∥∆xk − x∗∥ ≥ ε}| ≥ δ

}
∈ I.

Then, for n /∈ A we obtain

1

n
|{k ≤ n : ∥∆xk − x∗∥ ≥ ε}| < δ,

i.e.,
1

n
|{k ≤ n : ∥∆xk − x∗∥ < ε}| ≥ 1− δ.

Now, for each

y ∈ Br (x∗) = {y ∈ X : ∥y − x∗∥ ≤ r}
we have

∥∆xk − y∥ ≤ ∥∆xk − x∗∥+ ∥x∗ − y∥ ≤ ∥∆xk − x∗∥+ r.

Let

Pn = {k ≤ n : ∥∆xk − x∗∥ < ε} .
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Then, for k ∈ Pn we get ∥∆xk − y∥ < r + ε. Hence

Pn ⊂ {k ≤ n : ∥∆xk − y∥ < r + ε} .

This means,
|Pn|
n

≤ 1

n
|{k ≤ n : ∥∆xk − y∥ < r + ε}|

i.e.,
1

n
|{k ≤ n : ∥∆xk − y∥ < r + ε}| ≥ 1− δ.

Thus, for all n /∈ A,

1

n
|{k ≤ n : ∥∆xk − y∥ ≥ r + ε}| < 1− (1− δ) .

Hence, we get{
n ∈ N :

1

n
|{k ≤ n : ∥∆xk − y∥ ≥ r + ε}| ≥ δ

}
⊂ A.

Since A ∈ I, so{
n ∈ N :

1

n
|{k ≤ n : ∥∆xk − y∥ ≥ r + ε}| ≥ δ

}
∈ I

which gives that y ∈ I − st − LIMr
(∆xk)

and as a consequence, we obtain I-st-
LIMr

(∆xk)
⊃ Br (x∗). Therefore, diam

(
I − st− LIMr

(∆xk)

)
≥ 2r,

so diam
(
I − st− LIMr

(∆xk)

)
= 2r. □

Theorem 3.6. A sequence (∆xk) is I-st-bounded iff there is r > 0 such that
I − st− LIMr

(∆xk)
̸= ∅.

Proof. Take I-st-bounded sequence (∆xk). Then, there is K > 0 such that

P =

{
n ∈ N :

1

n
|{k ≤ n : ∥∆xk∥ > K}| > δ

}
∈ I.

Let r := sup {∥∆xk∥ : k ∈ P c}. The set I − st−LIMr
(∆xk)

includes the origin of

Rn and so I − st− LIMr
(∆xk)

̸= ∅.
On the contrary, presume that I − st− LIMr

(∆xk)
̸= ∅ for some r ≥ 0. Then,

there is x∗ ∈ I − st− LIMr
(∆xk)

i.e.,{
n ∈ N :

1

n
|{k ≤ n : ∥∆xk − x∗∥ ≥ r + ε}| ≥ δ

}
∈ I,

for each ε > 0 and δ > 0. So we can say that almost all ∆xk’s are contained in
some ball with any radius greater than r and (∆xk) is I-st-bounded. □

Theorem 3.7. The set I − st− LIMr
(∆xk)

of a sequence (∆xk) is a closed set.
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Proof. If I−st−LIMr
(∆xk)

= ∅, then it is obvious. Think that I−st−LIMr
(∆xk)

̸=
∅. Now, take a sequence (∆yk) in I−st−LIMr

(∆xk)
with lim

k→∞
∆yk = y∗. Choose

ε > 0. Then, there is i ε
2
∈ N such that

∥∆yk − y∗∥ <
ε

2

for all k > i ε
2
. Let k0 > i ε

2
such that yk0 ∈ I − st− LIMr

(∆xk)
. So,

A =

{
n ∈ N :

1

n

∣∣∣{k ≤ n : ∥∆xk − yk0
∥ ≥ r +

ε

2

}∣∣∣ ≥ δ

}
∈ I.

Since I is admissible ideal, hence M = N \ A is nonempty. Take n ∈ M . Then

1
n

∣∣{k ≤ n : ∥∆xk − yk0∥ ≥ r + ε
2

}∣∣ < δ

⇒ 1
n

∣∣{k ≤ n : ∥∆xk − yk0∥ < r + ε
2

}∣∣ ≥ 1− δ.

Select Pn =
{
k ≤ n : ∥∆xk − yk0

∥ < r + ε
2

}
. Then, for k ∈ Pn

∥∆xk − y∗∥ ≤ ∥∆xk − yk0
∥+ ∥yk0

− y∗∥ < r +
ε

2
+

ε

2
= r + ε.

Therefore, we obtain Pn ⊂ {k ≤ n : ∥∆xk − y∗∥ < r + ε}, which means that

1− δ ≤ |Pn|
n

≤ 1

n
|{k ≤ n : ∥∆xk − y∗∥ < r + ε}| .

So, we get

1

n
|{k ≤ n : ∥∆xk − y∗∥ ≥ r + ε}| < 1− (1− δ) = δ.

Then, we have{
n ∈ N :

1

n
|{k ≤ n : ∥∆xk − y∗∥ ≥ r + ε}| ≥ δ

}
⊂ A ∈ I.

Hence, y∗ ∈ I − st− LIMr
(∆xk)

and so, I − st− LIMr
(∆xk)

is a closed set. □

Theorem 3.8. The set I − st− LIMr
(∆xk)

of a sequence (∆xk) is convex.

Proof. Let y0, y1 ∈ I − st− LIMr
(∆xk)

and ε > 0 be given. Let

K0 = {k ∈ N : ∥∆xk − y0∥ ≥ r + ε}
and

K1 = {k ∈ N : ∥∆xk − y1∥ ≥ r + ε} .
Then, for δ > 0 we get{

n ∈ N :
1

n
|{k ≤ n : k ∈ K0 ∪K1}| ≥ δ

}
∈ I.

Select 0 < δ1 < 1 such that 0 < 1− δ1 < δ. Take

K =

{
n ∈ N :

1

n
|{k ≤ n : k ∈ K0 ∪K1}| ≥ 1− δ1

}
.
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Then, K ∈ I. Now for each n /∈ K we get
1
n |{k ≤ n : k ∈ K0 ∪K1}| < 1− δ1

⇒ 1
n |{k ≤ n : k /∈ K0 ∪K1}| ≥ {1− (1− δ1)} = δ1.

Therefore, {k ∈ N : k /∈ K0 ∪K1} is a nonempty set. Take k0 ∈ Kc
1 ∩ Kc

2 and
λ ∈ [0, 1]. Then

∥∆xk0
− (1− λ) y0 − λy1∥ = ∥(1− λ)∆xk0

+ λ∆xk0
− [(1− λ) y0 + λy1]∥

≤ (1− λ) ∥∆xk0 − y0∥+ λ ∥∆xk0 − y1∥ < (1− λ) (r + ε) + λ (r + ε) = r + ε.

Let

T = {k ∈ N : ∥∆xk − (1− λ) y0 − λy1∥ ≥ r + ε} .
Then obviously, Kc

1 ∩Kc
2 ⊂ T c. So for n /∈ K,

δ1 ≤ 1
n |{k ≤ n : k /∈ K0 ∪K1}| ≤ 1

n |{k ≤ n : k /∈ T}|

⇒ 1
n |{k ≤ n : k ∈ T}| < 1− δ1 < δ.

Therefore, Kc ⊂
{
n ∈ N : 1

n |{k ≤ n : k ∈ T}| < δ
}
. Since Kc ∈ F (I) , so{

n ∈ N :
1

n
|{k ≤ n : k ∈ T}| < δ

}
∈ F (I)

and so {
n ∈ N :

1

n
|{k ≤ n : k ∈ T}| ≥ δ

}
∈ I.

Hence, the set I − st− LIMr
(∆xk)

is convex. □

Theorem 3.9. Take r > 0. Then, a sequence (∆xk) ∈ X is r-I-statistically
convergent to x∗ iff there is a difference sequence (∆yk) ∈ X such that I − st−
lim∆y = x∗ and ∥∆xk −∆yk∥ ≤ r for all k ∈ N.

Proof. Take (∆yk) ∈ X, which is I − st − lim∆y = x∗ and ∥∆xk −∆yk∥ ≤ r
for all k ∈ N. Then for any ε > 0 and δ > 0, the set

K =

{
n ∈ N :

1

n
|{k ≤ n : ∥∆yk − x∗∥ ≥ ε}| ≥ δ

}
∈ I.

Take n /∈ K. Then
1
n |{k ≤ n : ∥∆yk − x∗∥ ≥ ε}| < δ

⇒ 1
n |{k ≤ n : ∥∆yk − x∗∥ < ε}| ≥ 1− δ.

Take

Tn = {k ≤ n : ∥∆yk − x∗∥ < ε}
for n ∈ N. Then for k ∈ Tn, we get

∥∆xk − x∗∥ ≤ ∥∆xk −∆yk∥+ ∥∆yk − x∗∥ < r + ε.
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Therefore,

Tn ⊂ {k ≤ n : ∥∆xk − x∗∥ < r + ε}

⇒ |Tn|
n ≤ 1

n |{k ≤ n : ∥∆xk − x∗∥ < r + ε}|

⇒ 1
n |{k ≤ n : ∥∆xk − x∗∥ < r + ε}| ≥ 1− δ

⇒ 1
n |{k ≤ n : ∥∆xk − x∗∥ ≥ r + ε}| < 1− (1− δ) = δ.

Hence, {
n ∈ N :

1

n
|{k ≤ n : ∥∆xk − x∗∥ ≥ r + ε}| ≥ δ

}
⊂ K

and since K ∈ I, we get{
n ∈ N :

1

n
|{k ≤ n : ∥∆xk − x∗∥ ≥ r + ε}| ≥ δ

}
∈ I.

Therefore, ∆x
r−I−st−→ x∗.

Conversely, presume that ∆x
r−I−st−→ x∗. Then, for ε > 0 and δ > 0,

K =

{
n ∈ N :

1

n
|{k ≤ n : ∥∆xk − x∗∥ ≥ r + ε}| ≥ δ

}
∈ I.

Take n /∈ K. Then
1
n |{k ≤ n : ∥∆xk − x∗∥ ≥ r + ε}| < δ

⇒ 1
n |{k ≤ n : ∥∆xk − x∗∥ < r + ε}| ≥ 1− δ.

Take

Tn = {k ≤ n : ∥∆xk − x∗∥ < r + ε} .
Now, we consider a difference sequence (∆yk) as follows:

∆yk :=

{
x∗, if ∥∆xk − x∗∥ ≤ r,

∆xk + r x∗−∆xk

∥∆xk−x∗∥ , otherwise.

Then,

∥∆yk −∆xk∥ =

 ∥x∗ −∆xk∥ ≤ r, if ∥∆xk − x∗∥ ≤ r,

r, otherwise.

Also,

∥∆yk − x∗∥ =

{
0, if ∥∆xk − x∗∥ ≤ r,∥∥∥∆xk − x∗ + r x∗−∆xk

∥∆xk−x∗∥

∥∥∥ , otherwise.

∥∆yk − x∗∥ =

{
0, if ∥∆xk − x∗∥ ≤ r,
∥∆xk − x∗∥ − r, otherwise.
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Let k ∈ Tn. Then

∥∆yk − x∗∥ =

{
0, if ∥∆xk − x∗∥ ≤ r,
< ε, if r < ∥∆xk − x∗∥ < r + ε.

Therefore, we obtain

Tn ⊂ {k ≤ n : ∥∆yk − x∗∥ < ε}

⇒ |Tn|
n ≤ 1

n |{k ≤ n : ∥∆yk − x∗∥ < ε}|

⇒ 1
n |{k ≤ n : ∥∆yk − x∗∥ < ε}| ≥ 1− δ

⇒ 1
n |{k ≤ n : ∥∆yk − x∗∥ ≥ ε}| < 1− (1− δ) = δ.

Thus {
n ∈ N :

1

n
|{k ≤ n : ∥∆yk − x∗∥ ≥ ε}| ≥ δ

}
⊂ K.

Since K ∈ I,
{
n ∈ N : 1

n |{k ≤ n : ∥∆yk − x∗∥ ≥ ε}| ≥ δ
}
∈ I and so I − st −

lim∆y = x∗. □

Definition 3.10. An element c ∈ X is named as I-statistical cluster point of a
sequence (∆xk) if for any ε > 0

dI ({k : ∥∆xk − c∥ < ε}) ̸= 0

where

dI (A) = I- lim
n→∞

1

n
|{k ≤ n : k ∈ A}| ,

if exists. The set of all I-statistical cluster point of (∆xk) can be indicated by
I-S

(
Γ(∆xk)

)
.

Theorem 3.11. Let (∆xk) be a sequence and c ∈ I-S
(
Γ(∆xk)

)
. Then, ∥x∗ − c∥ ≤

r for all x∗ ∈ I − st− LIMr
(∆xk)

.

Proof. If it is possible assume that there is x∗ ∈ I − st − LIMr
(∆xk)

such that

∥x∗ − c∥ > r. Let ε = ∥x∗−c∥−r
2 . Then, we get

{k ∈ N : ∥∆xk − x∗∥ ≥ r + ε} ⊇ {k ∈ N : ∥∆xk − c∥ < ε} . (1)

Since c ∈ I-S
(
Γ(∆xk)

)
, so dI ({k : ∥∆xk − c∥ < ε}) ̸= 0. Hence, by (1) we get

dI ({k : ∥∆xk − x∗∥ ≥ r + ε}) ̸= 0,

which contradicts that x∗ ∈ I − st− LIMr
(∆xk)

. Hence, ∥x∗ − c∥ ≤ r. □

Theorem 3.12. A sequence (∆xk) is r-I-statistically convergent to x∗ iff I −
st− LIMr

(∆xk)
= Br (x∗).
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Proof. The necessary part of the theorem is already proved in the 2nd part of
Theorem 3.5. For the sufficiency, let I − st − LIMr

(∆xk)
= Br (x∗) ̸= ∅. Thus,

the sequence (∆xk) is I-statistically bounded. Assume that (∆xk) has ∆I-
statistical cluster point x′

∗ different from x∗. The point

x∗ := x∗ +
r

∥x∗ − x′
∗∥

(x∗ − x′
∗)

satisfies,

∥x∗ − x′
∗∥ =

(
r

∥x∗ − x′
∗∥

+ 1

)
∥x∗ − x′

∗∥ = r + ∥x∗ − x′
∗∥ > r.

Since, x′
∗ ∈ I − S (Γx), by Theorem 3.11, x∗ /∈ I − st − LIMr

(∆xk)
. But this is

not possible as

∥x∗ − x′
∗∥ = r and I − st− LIMr

(∆xk)
= Br (x∗) .

Therefore x∗ is the unique I-statistical cluster point of (∆xk). So, (∆xk) is
r-I-statistically convergent to x∗. □

Theorem 3.13. (i) If c ∈ Γ(∆xk) (I), then I − st− LIMr
(∆xk)

⊆ Br (c).

(ii) I−st−LIMr
(∆xk)

=
⋂

c∈Γ(∆xk)
(I)

Br (c) =
{
x∗ ∈ Rn : Γ(∆xk) (I) ⊆ Br (x∗)

}
.

Proof. (i) If x∗ ∈ I − st− LIMr
(∆xk)

and c ∈ Γ(∆xk) (I), then ∥x∗ − c∥ ≤ r. So,
the consequence follows.

(ii) By (i) we can note

I − st− LIMr
(∆xk)

⊆
⋂

c∈Γ(∆xk)
(I)

Br (c) .

Assume that y ∈
⋂

c∈Γ(∆xk)
(I)

Br (c). We have ∥y − c∥ ≤ r for all c ∈ Γ(∆xk) (I)

and so

Γ(∆xk) (I) ⊆ Br (x∗) .

Then, clearly ⋂
c∈Γ(∆xk)

(I)

Br (c) =
{
x∗ ∈ Rn : Γ(∆xk) (I) ⊆ Br (x∗)

}
.

If it is possible, let y /∈ I − st− LIMr
(∆xk)

. Then, there is an ε > 0 such that

K =

{
n ∈ N :

1

n
|{k ≤ n : ∥∆xk − y∥ ≥ r + ε}| < δ

}
/∈ I,

which means the existence of an I-cluster point c of the sequence (∆xk) with
∥y − c∥ ≥ r + ε. Hence

Γ(∆xk) (I) ⊆ Br (y) and y /∈
{
x∗ ∈ Rn : Γ(∆xk) (I) ⊆ Br (x∗)

}
.
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Ultimately the fact that y ∈ I − st − LIMr
(∆xk)

follows from the examination
that

y ∈
{
x∗ ∈ Rn : Γ(∆xk) (I) ⊆ Br (x∗)

}
.

□
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9. P. Kostyrko, T. S̆alát and W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2000),

669-686.
10. P. Kostyrko, M. Macaj, T. S̆alát and M. Sleziak, I-convergence and extremal I-limit

points, Math. Slovaca 55 (2005), 443-464.
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33. E. Dündar and C. Çakan, Rough convergence of double sequences, Demonstr. Math. 47

(2014), 638-651.

34. E. Dündar, On Rough I2-convergence, Numer. Funct. Anal. Optim. 37 (2016), 480-491.
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45. Ö. Kişi, E. Dündar, Rough I2-lacunary statistical convergence of double sequences, J.
Inequal. Appl. 2018 (2018), 16 pages.
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