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QUASI HEMI-SLANT SUBMANIFOLDS OF KENMOTSU
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Abstract. The main purpose of the present paper is to introduce a brief

analysis on some properties of quasi hemi-slant submanifolds of Kenmotsu
manifolds. After discussing the introduction and some preliminaries about

the Kenmotsu manifold, we worked out some important results in the di-

rection of integrability of the distributions of quasi hemi-slant submanifolds
of Kenmotsu manifolds. Afterward, we investigate the conditions for quasi

hemi-slant submanifolds of a Kenmotsu manifold to be totally geodesic and

later we provide some non-trivial examples to validate the existence of such
submanifolds.
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1. Introduction

In 1972, the notion of Kenmotsu manifold was introduced by K. Kenmotsu
[14]. After that several works on this manifold have been done by various au-
thors such as [11, 12, 13, 20]. An interesting topic in the differential geome-
try is the theory of submanifolds in space endowed with additional structures
[6, 7]. In [6], B. Y. Chen initiated the study of slant manifolds of an almost
Hermitian manifold as a natural generalization of both holomorphic and totally
real submanifolds. N. Papaghiuc have studied semi-invariant submanifolds in a
Kenmotsu manifold [18, 19]. In [18] he studied the geometry of leaves on a semi-
invariant ξ⊥- submanifolds in a Kenmotsu manifolds. Afterwords, N. Papaghiuc
introduced a class of submanifolds in an almost Hermitian manifold, called the
semi-slant submanifolds, which includes the class of proper CR-submanifolds
and slant submanifolds.
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A. Carriazo and others [4, 5] proposed the idea of bi-slant submanifold under
the name anti-slant submanifold. Inspite of the fact that these bi-slant sub-
manifolds are proposed as hemi-slant submanifolds by B. Sahin in [24](see also
[17, 21, 22, 29]). Since then, this interesting subject has been studied broadly by
several geometers during last two decades (for instance we refer [27, 28, 31]). A.
Lotta [15] introduced the notion of slant immersion of a Riemannian manifold
into an almost contact metric manifold. Further, the slant submanifolds were
generalized as semi-slant submanifolds, pseudo-slant submanifolds, bi-slant sub-
manifolds, and hemi-slant submanifolds etc. in different kinds of differentiable
manifolds (see, [1, 2, 3, 8, 9, 10, 16, 21, 22, 23, 24, 25, 26]).

The paper is organized in 6 sections such that section 2 contains the basic
definitions, formulas and some useful results on Kenmotsu manifolds. Section 3
consists the definition of quasi hemi-slant submanifolds of a Kenmotsu manifold
and some important lemmas have been proved. Section 4 deals with the neces-
sary and sufficient conditions for the distributions to be integrable. In section
5, we investigate the totally geodesic property of the distributions considered in
the definition of quasi hemi slant submanifolds of a Kenmotsu manifold. Finally,
in the last section we provide some examples of such submanifolds.

2. Preliminaries

Let N (ϕ, ξ, η, g) be an almost contact manifold of dimension n = 2m + 1
admitting ϕ as a tensor field of (1,1) type, a vector field ξ and a 1-form η
satisfying the following conditions:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0, (1)

where I is an identity map defined on T N . Also, on an almost contact manifold
there exists a Riemannian metric g which satisfies the condition:

g(ϕU, ϕV ) = g(U, V )− η(U)η(V ), (2)

for U, V ∈ Γ(T N ), where Γ(T N ) represents the Lie algebra of vector fields on
N . A manifold N together with the structure (ϕ, ξ, η, g) is called an almost
contact metric manifold [30].

Due to the above equations (1) and (2), we obtain following consequences:

g(U, ξ) = η(U), (3)

and

g(ϕU, V ) = −g(U, ϕV ), (4)

for all vector fields U, V ∈ Γ(T N ).
Now if

(∇Uϕ)(V ) = g(ϕU, V )ξ − η(V )ϕU, (5)

and

∇Uξ = U − η(U)ξ (6)
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for any U, V tangent toN , where∇ is the Levi-civita connection, then (N , ϕ, ξ, η, g)
is called a Kenmotsu manifold.
In an n−dimensional Kenmotsu manifold, the following relations hold [14]:

(∇Uη)V = g(U, V )− η(U)η(V ),

S(U, ξ) = −(n− 1)η(U),

R(U, V )ξ = η(U)V − η(V )U,

η(R(U, V ), Z) = −g(V,Z)η(U) + g(U,Z)η(V ),

Qξ = −(n− 1)ξ,

R(ξ, U)V = −R(U, ξ)V = η(V )U − g(U, V )ξ,

where S is the Ricci tensor and R is the Riemannian tensor of the manifold.
Let M be a submanifold of a Kenmotsu manifold N with structure (ϕ, ξ, η, g)
and assume that ∇ represents the induced connection on the tangent bundle
T M, ∇⊥ represents the induced connection on the normal bundle T ⊥M of
M and we also denote g as induced Riemannian metric on M throughout this
paper.
The Gauss and Weingarten equations are given, respectively by [6]

∇UV = ∇UV + h(U, V ), (7)

and

∇UN = −ANU +∇⊥
UN (8)

for any vector fields U, V ∈ Γ(T M) and N ∈ Γ(T ⊥M). Also, the relation
between second fundamental form h and shape operator AN is given by

g(h(U, V ), N) = g(ANU, V ) (9)

for any vector fields U, V ∈ Γ(T M) and N ∈ Γ(T ⊥M).
The mean curvature vector is denoted and defined by the following equation

H =
1

m

m∑
j=1

h(ej , ej),

where m is the dimension of submanifold M and {ej}mj=1 is the local orthonor-
mal frame defined on M.

For any U ∈ Γ(T M) and N ∈ Γ(T ⊥M), we have the following conditions:

ϕU = νU + ωU, (10)

and

ϕN = FN +GN, (11)

where νU and FN represents the tangential components of ϕU and ϕN , respec-
tively; and ωU and GN are normal components of ϕU and ϕN , respectively.
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The covariant derivatives of the tensor fields ν, ω, F and G are defined as follows
[21]:

(∇Uν)V = ∇UνV − ν∇UV, (12)

(∇Uω)V = ∇⊥
UωV − ω∇UV, (13)

(∇UF )N = ∇UFN − F∇⊥
UN, (14)

(∇UG)N = ∇⊥
UGN −G∇⊥

UN (15)

for any U, V ∈ Γ(T M) and N ∈ Γ(T ⊥M). If ω is identically zero, i.e.,
ϕU ∈ Γ(T M) for any U ∈ Γ(T M), then submanifold M is called an invari-
ant submanifold. Moreover, if ν is identically zero, i.e., ϕU ∈ Γ(T ⊥M) for any
U ∈ Γ(T M), then submanifold M is known as anti-invariant submanifold.

3. Quasi hemi-slant submanifolds of Kenmotsu manifolds

In the current section, we study and define the quasi hemi-slant submanifolds
of Kenmotsu manifolds and we acquire the necessary and sufficient conditions
for the distributions associated with the definition of such submanifolds to be
integrable.

Definition 3.1. A submanifold M of a Kenmotsu manifold N , is said to be a
quasi hemi-slant submanifold if there exists three orthogonal distributions D,Dθ

and D⊥ of M, at the point p ∈ M satisfying the following properties [17]:
(1) T M possess the following orthogonal direct decomposition

T M = D ⊕Dθ ⊕D⊥⊕ < ξ >,

where < ξ > denotes the distribution spanned by ξ,
(2) D is the invariant distribution, i.e., ϕD = D,
(3) Dθ is the slant distribution with slant angle θ,
(4) D⊥ is the ϕ− anti-invariant distribution, i.e., ϕD⊥ ⊂ T ⊥M.

Consequently, θ is called as quasi hemi-slant angle ofM. Now, considerm,mθ

and m⊥ be the dimension of the distributions D,Dθ and D⊥, respectively and
then we see the following cases:
• M is hemi-slant submanifold if m = 0, mθ ̸= 0 and m⊥ ̸= 0,
• M is semi-invariant submanifold if m ̸= 0, mθ = 0, and m⊥ ̸= 0,
• M is semi-slant submanifold if m ̸= 0, mθ ̸= 0 and m⊥ = 0,
• we may call M as proper quasi hemi-slant submanifold if m ̸= 0,m⊥ ̸= 0 and
mθ ̸= 0 with θ ̸= 0, π

2 .

Hence, one can easily observe that the notion of quasi hemi-slant submanifold
is a generalization of invariant, anti-invariant, semi-invariant, slant, semi-slant
and hemi-slant submanifolds.
Let M be a quasi hemi-slant submanifold of Kenmotsu manifold N . Suppose
that P, P θ and P⊥ be the projections of U ∈ Γ(T M) on the distributions D,Dθ

and D⊥, respectively. Then we have the following conditions:

X = PX + P θX + P⊥X + η(X)ξ, (16)
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for any X ∈ Γ(T M).
Now in view of (10), (16) takes the form

ϕX = νPX + ωPX + νP θX + ωP θX + νP⊥X + ωP⊥X.

But since, ϕD = D and ϕD⊥ ⊂ T ⊥M, we have wPX = 0 and νP θX = 0.
Hence, we have

ϕX = νPX + νP θX + ωP θX + ωP⊥X. (17)

Since ϕD = D, we have ωPX = 0. Therefore, we get

ϕX = νPX + νP1X + ωP1X + νP2X + ωP2X.

So, it is obvious that

νX = νPX + νP θX,

and

ωX = ωP θX + ωP⊥X

which implies that

ϕ(T M) = D ⊕ νDθ ⊕ ωDθ ⊕ ωD⊥, (18)

and

T ⊥M = ωDθ ⊕ ωD⊥ ⊕ µ, (19)

where µ is the orthogonal complement of ωDθ ⊕ ωD⊥ in Γ(T ⊥M) and µ is
invariant with respect to ϕ.
Also, for any N ∈ Γ(T ⊥M), we put

ϕN = FN +GN, (20)

where FN ∈ Γ(Dθ ⊕D⊥) and GN ∈ Γ(µ).

Lemma 3.2. Let M be a quasi hemi-slant submanifold of a Kenmotsu manifold
N . Then we have the following observations [21]:
νD = D, νD⊥ = 0, FωDθ = Dθ,
FωD⊥ = D⊥, and νDθ ⊂ Dθ.

With the help of the equations (1), (10) and (11), we can obtain the following
observations:

Lemma 3.3. Let M be a quasi hemi-slant submanifold of a Kenmotsu manifold
N and consider the endomorphism ν, the projection morphism ω, F and G in
the tangent bundle of M, then
(i) ν2 + Fω = −I + η ⊗ ξ on T M,
(ii) ων +Gω = 0 on T M,
(iii) ων +Gω = 0 on T M,
(iv) νF + FG = 0 on T ⊥M,
where I is an identity operator.
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Proof. From the equation (10), we have

ϕU = νU + ωU

for any U ∈ Γ(T M). Operating ϕ on both sides, we obtain

ϕ2U = ϕνU + ϕωU.

By using equation (1) and comparing tangential and normal parts, we have the
required identities (i) and (ii). Similarly, with the help of the equations (11)
and (1) for any N ∈ Γ(T ⊥M), we have the rest two identities (iii) and (iv). □

Lemma 3.4. Let M be a quasi hemi-slant submanifold of a Kenmotsu manifold
N , then for any X ∈ Γ(T M) and N ∈ Γ(T ⊥M), we have

∇XFN −AGNX + νANX − F∇⊥
XN = g(ωX,N)ξ,

h(X,FN) +∇⊥
XGN + ωANX −G∇⊥

XN = 0,

(∇XF )N = AGNX − νANX + g(ωX,N)ξ,

and

(∇XG)N = −h(X,FN)− ωANX.

Proof. For any X ∈ Γ(T M) and N ∈ Γ(T ⊥M), we have

(∇Xϕ)N = g(ϕX,N)ξ − η(N)ϕX.

Bu using the equations (7), (8), (10) and (11), we obtain

∇XFN + h(X,FN) + (−AGNX +∇⊥
XGN) + νANX

+ ωANX − F∇⊥
XN −G∇⊥

XN = g(ϕX,N)ξ.

Now comparing the tangential and normal parts, we get the first two assertions.
Next with the help of (14) and (15), we obtain the rest two required results.

□

In a similar way as Lemma 3.4, using the equations (7), (8), (10), (11), (12)
and (13), we also have the following properties:

Proposition 3.5. Let M be a quasi hemi-slant submanifold of a Kenmotsu
manifold N , then for any X,Y ∈ Γ(T M), we have

∇XνY −AωY X − ν∇XY − Fh(X,Y ) = g(νX, Y )ξ − η(Y )νX,

h(X, νY ) +∇⊥
XωY − ω∇XY −Gh(X,Y ) = −η(Y )ωX,

(∇Xν)Y = AωY X + Fh(X,Y ) + g(νX, Y )ξ − η(Y )νX,

and

(∇Xω)Y = Gh(X,Y )− η(Y )ωX − h(X, νY ).
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For later use, we state the following Lemmas related to the distributions Dθ and
D⊥ involved in the definition of hemi-slant submanifold:

Lemma 3.6. Let M be a quasi hemi-slant submanifold of a Kenmotsu manifold
N , then
(i) ν2U = −(cos2θ)U,
(ii) g(νU, νV ) = (cos2θ)g(U, V ),
(iii) g(ωU, ωV ) = (sin2θ)g(U, V )
for any U, V ∈ Γ(Dθ) .

Proof. Proof of this lemma is same as in [22]. □

Lemma 3.7. Let M be a quasi hemi-slant submanifold of a Kenmotsu manifold
N , then

AϕWZ = AϕZW + ν([W,Z]),

and

∇⊥
ZϕW −∇⊥

WϕZ = ω([Z,W ])

for all Z,W ∈ D⊥.

Proof. Let Z,W ∈ D⊥, then

(∇Zϕ)W = ∇Z(ϕW )− ϕ(∇ZW ).

By making use of the equations (5), (7) and (8), we obtain

g(ϕZ,W )ξ − η(W )ϕZ =−AϕWZ +∇⊥
ZϕW − ν(∇ZW )

− ω(∇ZW )− Fh(Z,W )−Gh(Z,W ).

Now, comparing tangential and normal parts, we get

0 = −AϕWZ − ν(∇ZW )− Fh(Z,W ), (21)

and

∇⊥
ZϕW − ω(∇ZW )−Gh(Z,W ) = 0. (22)

Now, interchanging Z and W in the equations (21) and (22), we get

0 = −AϕZW − ν(∇WZ)− Fh(W,Z), (23)

and

∇⊥
ZϕZ − ω(∇WZ)−Gh(W,Z) = 0. (24)

Now, subtracting equation (23) from (21) and equation (24) from (22), respec-
tively and using the fact that h is symmetric, we obtain the required results. □



482 Rajendra Prasad, Abdul Haseeb and Pooja Gupta

4. Integrability of distributions

In this section we will derive some results on involved distributions D,Dθ and
D⊥ of quasi hemi-slant submanifold, which play a crucial role from a geometrical
point of view.

Theorem 4.1. Let M be a quasi hemi-slant submanifold of a Kenmotsu mani-
fold N , then the distribution D ⊕Dθ ⊕D⊥ is integrable.

Proof. For X,Y ∈ D ⊕Dθ ⊕D⊥, we have

g([X,Y ], ξ) = g(∇XY, ξ)− g(∇Y X, ξ)

= Xg(Y, ξ)− g(Y,∇Xξ)− Y g(X, ξ) + g(X,∇Y ξ)

= g(X,Y − η(Y )ξ)− g(Y,X − η(X)ξ)

= 0.

Since, T M = D ⊕ Dθ ⊕ D⊥⊕ < ξ >, therefore [X,Y ] ∈ D ⊕ Dθ ⊕ D⊥. So,
D ⊕Dθ ⊕D⊥ is integrable. □

Theorem 4.2. Let M be a quasi hemi-slant submanifold of a Kenmotsu mani-
fold N . Then the invariant distribution D is integrable if and only if

g(∇UνV −∇V νU, νP
θZ) = g(h(V, νU)− h(U, νV ), ωZ) (25)

for any U, V ∈ Γ(D) and Z = P θZ + P⊥Z ∈ Γ(Dθ ⊕D⊥).

Proof. As we know that the invariant distribution D is integrable on M if and
only if g([U, V ], ξ) = 0 and g([U, V ], Z) = 0 for any U, V ∈ Γ(D), Z ∈ Γ(Dθ⊕D⊥)
and ξ ∈ Γ(T M).
SinceM is a quasi hemi-slant submanifold of a Kenmotsu manifold N , therefore,
immediately we have

g([U, V ], ξ) = g(∇UV, ξ)− g(∇V U, ξ)

= Ug(V, ξ)− g(V,∇Uξ)− V g(U, ξ) + g(U,∇V ξ)

= g(U, V − η(V )ξ)− g(V,U − η(U)ξ)

= 0.

Thus, the invariant distribution D is integrable iff g([U, V ], Z) = 0.
Now, for any U, V ∈ Γ(D) and Z = P θZ + P⊥Z ∈ Γ(Dθ ⊕ D⊥), with the

help of the equations (2) and (4), we have

g([U, V ], Z) = g(ϕ([U, V ]), ϕZ) + η([U, V ])η(Z)

= g(ϕ(∇UV ), ϕZ)− g(ϕ(∇V U), ϕZ)

= g(∇UϕV − (∇Uϕ)V, ϕZ)− g(∇V ϕU − (∇V ϕ)U, ϕZ)

= g(∇UϕV, ϕZ)− g((∇Uϕ)V, ϕZ)− g(∇V ϕU, ϕZ) + g((∇V ϕ)U, ϕZ).

Now using the fact that ωU = 0 and ωV = 0 for any U, V ∈ Γ(D), we obtain

g([U, V ], ξ) = g(∇U (νV ), ϕZ)− g(∇V (νU), ϕZ).
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By using the equation (7), we have

g([U, V ], Z) = g(∇U (νV )−∇V (νU), ϕZ) + g(h(U, νV )− h(V, νU), ϕZ).

Again using the equation (10) for any Z = P θZ + P⊥Z ∈ Γ(Dθ ⊕D⊥), we get

g([U, V ], Z) =g(∇UνV −∇V νU, νP
θZ + νP⊥Z) + g(h(U, νV )

− h(V, νU), ωP θZ + ωP⊥Z).

This proves the assertion. □

Theorem 4.3. Let M be a proper quasi hemi-slant submanifold of a Kenmotsu
N . Then the slant distribution Dθ is integrable if and only if

g(AωV1
U1 −AωU1

V1, νPZ) =g(AωνV1
U1 −AωνU1

V1, Z)

+ g(∇⊥
U1
ωV1 −∇⊥

V1
ωU1, ωP

⊥Z)

for any U1, V1 ∈ Γ(Dθ) and Z ∈ Γ(D ⊕D⊥).

Proof. For any U1, V1 ∈ Γ(Dθ) and Z = PZ + P⊥Z ∈ Γ(D ⊕ D⊥), the distri-
bution Dθ is integrable on M iff g([U1, V1], ξ) = 0 and g([U1, V1], Z) = 0, where
ξ ∈ Γ(T M). Now, the first case is obvious as in Theorem 4.2. So, the slant
distribution Dθ is integrable iff g([U1, V1], Z) = 0.
Now, for any U1, V1 ∈ Γ(Dθ) and Z = PZ + P⊥Z ∈ Γ(D ⊕ D⊥), using the
equation (3) we get

g([U1, V1], Z) = g(ϕ[U1, V1], ϕZ) + η([U1, V1])η(Z)

= g(ϕ(∇U1V1), ϕZ)− g(ϕ(∇V1U1), ϕZ).

Now using the equations (5) and (10), we get

g([U1, V1], Z) =g(∇U1(νV1 + ωV1), ϕZ)− g(∇V1(νU1 + ωU1), ϕZ)

− {g(ϕU1, V1)g(ξ, ϕZ)− η(V1)g(ϕU1, ϕZ)}
+ {g(ϕV1, U1)g(ξ, ϕZ)− η(U1)g(ϕV1, ϕZ)}

=g(∇U1
(νV1), ϕZ) + g(∇U1

(ωV1), ϕZ)− g(∇V1
(νU1), ϕZ)

− g(∇V1
(ωU1), ϕZ)

which in light of the equations (5) and (8) and the fact that (∇Uϕ)V = ∇UϕV −
ϕ∇UV , we obtain the following condition:

g([U1, V1], Z) =− g(∇U1ϕ(νV1)− (∇U1ϕ)νV1, Z) + g(∇V1ϕ(νU1)− (∇V1ϕ)νU1, Z)

+ g(−AωV1
U1 +∇⊥

U1
ωV1, ϕZ)− g(−AωU1

V1 +∇⊥
V1
ωU1, ϕZ)

=− g(∇U1
ϕ(νV1), Z) + g(∇V1

ϕ(νU1), Z) + g(−AωV1
U1 +∇⊥

U1
ωV1, ϕZ)

− g(−AωU1
V1 +∇⊥

V1
ωU1, ϕZ).

Now for any Z = PZ + P⊥Z ∈ Γ(D ⊕D⊥), from the equation (10) we obtain

g([U1, V1], Z) =− g(∇U1ν
2V1, Z)− g(∇U1ωνV1, Z) + g(∇V1ν

2U1, Z)
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+ g(∇V1
ωνU1, Z)− g(AωV1

U1 −AωU1
V1, νZ + ωZ)

+ g(∇⊥
U1
ωV1 −∇⊥

V1
ωU1, ϕPZ + ϕP⊥Z).

With the help of Lemma 3.6 and well-known fact ωPZ = 0, the above equation
leads to

g([U1, V1], Z) =cos2θg(∇U1V1 −∇V1U1, Z)− g(∇U1ωνV1 −∇V1ωνU1, Z)

− g(AωV1
U1 −AωU1

V1, νPZ) + g(∇⊥
U1
ωV1 −∇⊥

V1
ωU1, ωP

⊥Z)

=cos2θg([U1, V1], Z)

− g(−AωνV1U1 +∇⊥
U1
ωνV1 +AωνU1V1 −∇⊥

V1
ωνU1, Z)

− g(AωV1
U1 −AωU1

V1, νPZ) + g(∇⊥
U1
ωV1 −∇⊥

V1
ωU1, ωP

⊥Z)

=cos2θg([U1, V1], Z)− g(−AωνV1U1 +AωνU1V1, Z)

− g(AωV1U1 −AωU1V1, νPZ) + g(∇⊥
U1
ωV1 −∇⊥

V1
ωU1, ωP

⊥Z)

which implies that

sin2θg([U1, V1], Z) =g(AωνV1
U1 −AωνU1

V1, Z)− g(AωV1
U1 −AωU1

V1, νPZ)

+ g(∇⊥
U1
ωV1 −∇⊥

V1
ωU1, ωP

⊥Z).

Thus the statement of the Theorem 4.3 follows. □

Now, with the help of the above result, the sufficient condition for Dθ to be
integrable is given by the following theorem:

Theorem 4.4. Let M be a proper quasi hemi-slant submanifold of a Kenmotsu
manifold N . If

AωV1
U1 −AωU1

V1 ∈ D⊥ ⊕Dθ

AωνV1
U1 −AωνU1

V1 ∈ Dθ

and

∇⊥
U1
ωV1 −∇⊥

V1
ωU1 ∈ ωDθ ⊕ µ

for any U1, V1 ∈ Γ(Dθ), then the slant distribution Dθ is integrable.

Theorem 4.5. Let M be a proper quasi hemi-slant submanifold of a Kenmotsu
N . Then the anti-invariant distribution D⊥ is integrable if and only if

g(ν([U, V ]), νX) = g(∇⊥
V ωU −∇⊥

UωV, ωP
θX)

for any U, V ∈ Γ(D⊥), and X ∈ Γ(D ⊕Dθ).

Proof. The anti-invariant distribution is integrable iff for any U, V ∈ Γ(D⊥) and
X ∈ Γ(D⊕Dθ), we have g([U, V ], X) = 0, where X = PX+P θX ∈ Γ(D⊕Dθ).
Now from the equation (2), we have

g([U, V ], X) = g(ϕ([U, V ]), ϕX) + η([U, V ])η(X)

= g(ϕ([U, V ]), ϕX)
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= g(ϕ∇UV, ϕX)− g(ϕ∇V U, ϕX)

= g(∇UϕV, ϕX)− g(∇V ϕU, ϕX).

In view of the equation (8) and the fact that ωPX = 0, the last equation takes
the form

g([U, V ], X) = g(−AϕV U +AϕUV, ϕX) + g(∇⊥
UϕV −∇⊥

V ϕU, ϕX)

= g(−AϕV U +AϕUV, νPX + νP θX) + g(∇⊥
UϕV −∇⊥

V ϕU, ωP
θX).

In the account of Lemma 3.7, we get the following consequences:

g([U, V ], X) = g(ν([U, V ], νX) + g(∇⊥
UωV −∇⊥

V ωU, ωP
θX).

This shows that anti-invariant distribution D⊥ is integrable if and only if

g(ν([U, V ]), νX) = g(∇⊥
V ωU −∇⊥

UωV, ωP
θX).

Hence, the theorem is proved. □

We also have the following necessary and sufficient condition for anti-invariant
distribution D⊥ to be integrable:

Theorem 4.6. Let M be a quasi hemi-slant submanifold of a Kenmotsu mani-
fold N , then the anti-invariant distribution D⊥ is integrable if and only if

AϕWZ = AϕZW

for any Z,W ∈ D⊥.

Proof. With the help of Lemma 3.7, for any Z,W ∈ D⊥ we have

AϕWZ = AϕZW + ν([W,Z]).

Now if D⊥ is integrable then for any Z,W ∈ Γ(D⊥), we have [W,Z] ∈ Γ(D⊥),
which implies that ν([W,Z]) = 0.
Hence, from the above equation we have

AϕWZ = AϕZW.

Conversely, if AϕWZ = AϕZW , then we have

ν([W,Z]) = 0 =⇒ [W,Z] ∈ D⊥

for any Z,W ∈ D⊥. Hence, D⊥ is integrable. □

5. Totally geodesic foliations

Now, we give some results on totally geodesicness property of quasi hemi-slant
submanifolds of a Kenmotsu manifold.
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Theorem 5.1. Let M be a proper quasi hemi-slant submanifold of a Kenmotsu
manifold N . Then M defines totally geodesic foliation if and only if

g(h(Z,PW ) + cos2θh(Z,P θW ), V ) = g(∇⊥
ZωνP

θW,V )

+g(AωP θWZ +AωP⊥WZ,FV )− g(∇⊥
ZωW,GV )

for any Z,W ∈ Γ(T M) and V ∈ Γ(T⊥M).

Proof. By using (∇Xϕ)Y = ∇XϕY − ϕ(∇XY ) and the equation (2), we have
the following conditions

g(∇ZW,V ) =g(∇ZPW,V ) + g(∇ZP
θW,V ) + g(∇ZP

⊥W,V )

=g(∇ZPW,V ) + g(ϕ∇ZP
θW,ϕV ) + η(∇ZP

θW )η(V )

+g(ϕ∇ZP
⊥W,ϕV ) + η(∇ZP

⊥W )η(V ).

With the help of the equations (2),(5), (10), (11) and Lemma 3.7, we obtain

g(∇ZW,V ) =g(∇ZPW,V ) + g(∇ZνP
θW,ϕV ) + g(∇ZωP

θW,ϕV )

+ g(∇ZωP
⊥W,ϕV )

=g(∇ZPW,V )− g(∇Zν
2P θW +∇ZωνP

θW,V )

+ g(∇ZωP
θW,ϕV ) + g(∇ZωP

⊥W,ϕV )

=g(∇ZPW,V ) + cos2θg(∇ZP
θW,V )− g(∇ZωνP

θW,V )

+ g(∇ZωP
θW,ϕV ) + g(∇ZωP

⊥W,ϕV ).

Using the equations (7) and (8), we have

g(∇ZW,V ) =g(h(Z,PW ), V ) + cos2θg(h(Z,P θW ), V )− g(∇⊥
ZωνP

θW,V )

+ g(−AωP θWZ +∇⊥
ZωP

θW,ϕV ) + g(−AωP⊥WZ +∇⊥
ZωP

⊥W,ϕV )

=g(h(Z,PW ) + cos2θh(Z,P θW ), V )− g(AωP θWZ +AωP⊥WZ,FV )

+ g(∇⊥
ZωW,GV )− g(∇⊥

ZωνP
θW,V )

and hence we have the required result.
□

Theorem 5.2. Let M be a quasi hemi-slant submanifold of a Kenmotsu mani-
fold N . Then the invariant distribution D does not define totally geodesic folia-
tion on M.

Proof. The invariant distribution D defines a totally geodesic foliation on M iff
g(∇UV, ξ) = 0, g(∇UV,Z) = 0 and g(∇UV,W ) = 0, for any U, V ∈ Γ(D), Z =
P θZ + P⊥Z ∈ Γ(Dθ ⊕D⊥) and W ∈ Γ(T⊥M). Since, g(∇UV, ξ) = Ug(V, ξ)−
g(V,∇Uξ) = −g(V,∇Uξ). With the help of the equation (6), we have

g(∇UV, ξ) = −g(V,U − η(U)ξ)

= −g(V,U) + η(U)g(V, ξ)
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= −g(V,U)

̸= 0

for some U, V ∈ Γ(D).
As g(∇UV, ξ) ̸= 0, therefore invariant distribution D does not define totally
geodesic foliation on M. □

Similarly as above we have the following theorems for slant distribiution Dθ and
anti-invariant D⊥:

Theorem 5.3. Let M be a quasi hemi-slant submanifold of a Kenmotsu mani-
fold N . Then the slant distribution Dθ with slant angle θ does not define totally
geodesic foliation on M.

Theorem 5.4. Let M be a quasi hemi-slant submanifold of a Kenmotsu mani-
fold N . Then the anti-invariant distribution D⊥ does not define totally geodesic
foliation on M.

6. Examples

Let us consider an 11-dimensional manifold

M = {(x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, z) ∈ R11 : z ̸= 0},

where (xi, yi, z), i = 1, 2, 3, 4, 5 are standard coordinates in R11. We choose the
vector fields

ϵi = e−z ∂
∂xi

, ϵ5+i = e−z ∂
∂yi

, ϵ11 = ∂
∂z ,

where i = 1, 2, 3, 4, 5, which are linearly independent at each points of M. Let
g be the Riemannian metric defined by

g = e2z(dx⊗ dx+ dy ⊗ dy) + η ⊗ η,

where η is the 1- form defined by

η(X) = g(X, ϵ11),

g(ϵi, ϵj) = 0 and g(ϵi, ϵi) = 1

for any vector field X ∈ Γ(T M) and ∀ i, j = 1, 2, ..., 10. Hence {ϵ1, ϵ2, ..., ϵ11} is
an orthonormal basis of M. We define (1,1) tensor field ϕ as

ϕ{
∑5

i=1(X
i ∂
∂xi

+ Y i ∂
∂yi

) + Z ∂
∂z} =

∑5
i=1(X

i ∂
∂yi

− Y i ∂
∂xi

).

Thus, we get
ϕ(ϵ1) = ϵ6, ϕ(ϵ2) = ϵ7, ϕ(ϵ3) = ϵ8, ϕ(ϵ4) = ϵ9,

ϕ(ϵ5) = ϵ10, ϕ(ϵ6) = −ϵ1, ϕ(ϵ7) = −ϵ2, ϕ(ϵ8) = −ϵ3,

ϕ(ϵ9) = −ϵ4, ϕ(ϵ10) = −ϵ5, ϕ(ϵ11) = 0.
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The linearity property of g and ϕ yields that

η(ϵ11) = g(ϵ11, ϵ11) = 1,

ϕ2X = −X + η(X)ϵ11,

and

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for any vector fields X,Y on M. Thus for ϵ11 = ξ, M(ϕ, ξ, η, g) defines an
almost contact metric manifold.

Now by using well-known Koszul’s formula for the Riemannian connection ∇ is
given by

2g(∇XY,Z) =Xg(Y,Z) + Y g(Z,X)− Zg(X,Y ) + g([X,Y ], Z)

− g([Y, Z], X) + g([Z,X], Y )

for any vector fields X,Y, Z on M, we can easily verify the equations (5) and
(6) for any vector fields X,Y, Z on M. Therefore, M(ϕ, ξ, η, g) is a Kenmotsu
manifold. Moreover, we have

[ϵi, ξ] = ϵi, [ϵi, ϵj ] = 0, ∀i, j = 1, 2, ..., 10.

Using Koszul’s formula, we can easily find that

∇ϵiϵi = −ξ, ∇ϵiϵj = 0, for i ̸= j,

∇ϵiξ = ϵi, ∇ξϵi = 0, ∀i, j = 1, 2, ..., 10.

Now, let M be a subset of M and consider the immersion f : M → M defined
as

f(u, v, w, r, s, t, z) = (u, 0, w, 0, s, vcosθ, vsinθ, 0, r, t, z),

where, 0 < θ < π
2 . If we take

X1 = ϵ1, X2 = cosθϵ6 + sinθϵ7, X3 = ϵ3, X4 = ϵ9,

X5 = ϵ5, X6 = ϵ10, X7 = ξ = ϵ11,

then the restriction of X1, X2, ..., X7 to M forms an orthonormal frame of the
tangent bundle T M. Obviously, we get

ϕX1 = ϵ6, ϕX2 = −cosθϵ1 − sinθϵ2, ϕX3 = ϵ8, ϕX4 = −ϵ4,

ϕX5 = ϵ10, ϕX6 = −ϵ5, ϕX7 = 0.

Let us put Dθ = span{X1, X2}, D⊥ = span{X3, X4} and D = span{X5, X6}.
Then obviously Dθ, D⊥ and D satisfy the definition of quasi hemi-slant subman-
ifold of a Kenmotsu manifold. Hence, submanifold M defined by f is proper
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quasi hemi-slant submanifold of R11 with slant angle 0 < θ < π
2 .
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