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THE INVERSE GALOIS PROBLEM

 LUKASZ MATYSIAK

Abstract. The inverse Galois problem concerns whether or not every fi-

nite group appears as the Galois group of some Galois extension of the
rational numbers. This problem, first posed in the early 19th century, is

unsolved. In other words, we consider a pair - the group G and the field

K. The question is whether there is an extension field L of K such that
G is the Galois group of L. In this paper we present the proof that any

group G is a Galois group of any field extension. In other words, we only

consider the group G. And we present the solution to the inverse Galois
problem.
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1. Introduction

Some specific field extensions K ⊂ L are classified as Galois extensions (sepa-
rable and normal). We call the group of automorphism of such K ⊂ L the Galois
group of K ⊂ L. The inverse Galois problem asks the question whether every
finite group is isomorphic to the Galois group of a Galois extension of rational
numbers Q.

In this section we discuss some historical (and some modern) results concern-
ing the Inverse Galois Problem. In Galois theory we see many familiar groups
arise as automorphism groups of a field L that fix some subfield K ⊂ L. The
Inverse Galois problem is concerned with classifying which finite groups can be
realized as such automorphism groups. There has been cosiderable progress
made on this question when we take the base field K to be Q.

In the 1800’s it was shown that the Inverse Galois problem holds for all finite
abelian groups ([4]).
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In 1937 Scholz and Reichardt proved that all odd p-groups can be realized
as the Galois group of some number field over Q. The proof involved solving
special central embedding problems of the form

1 → Z/pZ → G → G → 1,

where G is the Galois group of some number field L over Q, Z/pZ is the Galois
group of the algebraic closure of L (L) over L, and, G is the Galois group of L
over Q.

In 1954 Shafarevich showed that every solvable group is a Galois group over
Q. There was a flaw pointed out in this proof in 1989, but it was resolved by
Shafarevich in the same year ([1], [3]).

The question is still open for non-solvable groups. However, many specific
examples of non-solvable groups are known to occur as Galois groups over Q
(ex. all An and Sn. This follows by Hilbert’s irreducibility theorem which states
that if a group G can be recognized as a Galois group of an extension of Q(t)
with basefield Q(t), then G can also be recognized as a Galois group of a number
field over Q.)

For simple groups we know that An, Z/pZ, and 25 of the 26 sporadic simple
groups occur as Galois groups over Q. The question of whether simple Lie type
groups and/or the last sporadic group M23 occur as Galois groups over Q is still
open.

In [2] Dugas and Göbel show that all infinite groups are Galois groups over
any field.

2. Main results

Let’s start from the following Lemma.

Lemma 2.1. Let K be a field and G be a finite group of field automorphism
of K, then K is a Galois extension of the fixed field KG with Galois group G,
moreover [K : KG] = |G|.

Proof. Pick any α ∈ K and consider a maximal subset {σ1, . . . , σn} ⊆ G for
which all σiα are distinct. Now any τ ∈ G must permute the σiα as it is an
automorphism and if some τσiα ̸= σjα for all j then we could extend our set of
σs by adding this τσi.

So α is a root of

fα(X) =

n∏
i=1

(X − σiα),

note that fα is fixed by τ by the above. So all the coefficients of fα are in KG.
By construction fα is a separable polynomial as the σiα were chosen distinct,
note that fα also splits into linear factors in K.
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The above was for arbitrary α ∈ K so we have hust shown directly that K
is a separable and normal extension of KG, which is the definition of Galois
extension. As every element of KG is a root of polynomial of degree n we
cannot have the extension degree [K : KG] > n. But we also have a group of n
automorphisms of K that fix KG so [K : KG] ⩾ n and hence [K : KG] = n. □

Theorem 2.2. Every finite group is a Galois group.

Proof. Let K be an arbitrary field, G any finite group. Now take L = K(g′ : g ∈
G) (i.e. adjoin all elements of G to K as indeterminates, denoted by g′). Now
we have a natural action of G on L defined via h · g′ = (hg)′ and extending
K-linearly. Now L and G satisfy Lemma 2.1 and hence LG ⊂ L is a Galois
extension with Galois group G. □

From Theorem 2.2 we have a Corollary that is commonly known as the Inverse
Galois Problem.

Corollary 2.3. Every finite group is the Galois of Galois extension of Q.

Proof. It is enough take K = Q. From proof of Theorem 2.2 we have LG =
Q. □

Later a generalization of the Inverse Galois Problem arose, where instead Q
we take any field K. Unfortunately, such a fact does not follow from the proof,
because in general the equality LG = K not holds.
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