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β-FUZZY FILTERS OF STONE ALMOST DISTRIBUTIVE
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Abstract. In this paper, we studied on β-fuzzy filters of Stone almost
distributive lattices. An isomorphism between the lattice of β-fuzzy filters

of a Stone ADL A onto the lattice of fuzzy ideals of the set of all boosters of

A is established. The fact that any β-fuzzy filter of A is an e-fuzzy filter of A
is proved. We discuss on some properties of prime β-fuzzy filters and some

topological concepts on the collection of prime β-fuzzy filters of a Stone
ADL. Further we show that the collection T = {Xβ(λ) : λ is a fuzzy ideal of

A} is a topology on FSpecβ(A) where Xβ(λ) = {µ ∈ FSpecβ(A) : λ ⊈ µ}.

AMS Mathematics Subject Classification : 06D99, 06D05, 06D30.

Key words and phrases : Almost distributive lattices, Stone almost dis-
tributive lattices, prime β-fuzzy filter, prime fuzzy ideal, booster, isomor-

phism.

1. Introduction

The class of distributive lattices has many interesting properties, which lat-
tices, in general, do not have. For this reason, U.M. Swamy and G.C. Rao [12]
introduced the concept of an almost distributive lattice(ADL) as a common ab-
straction of lattice and ring theoretic generalizations of a Boolean algebra. In
[12], it was proved that the commutativity of ∨, the commutativity of ∧, the
right distributivity of ∨ over ∧ and the absorption law (x ∧ y) ∨ x = x are all
equivalent to each other and whenever any one of these properties holds, an ADL
A becomes a distributive lattice. Later, U.M. Swamy, G.C. Rao, and G. Nanaji
Rao in [13] introduced the concept of pseudo-complementation in an ADL. U.M.
Swamy, G.C. Rao, and G. Nanaji Rao in [14] introduced the concept of Stone
ADL. It is an ADL with a pseudo-complementation ∗ that satisfies the condition
r∗ ∨ r∗∗ is maximal, for all r ∈ A.
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In [18], the concept of fuzzy set theory as a generalization of classical set
theory was introduced by Zadeh. Rosenfield [8] started the pioneering work in
the domain of fuzzification of algebraic objects on fuzzy groups. In particular
Y. Bo et al [17] and Swamy et al [12] have laid down the foundation for fuzzy
ideals of a lattice and an ADL respectively.

C. Santhi Sundar Raj and et al. [10] introduced the concept of fuzzy prime
ideals of an ADLs. In 1998, U. M. Swamy and D. Viswanadha Raju [11] intro-
duced the concept of fuzzy ideals and fuzzy congruences of distributive lattices
and showed that there is a one-to-one correspondence between the lattice of
fuzzy ideals and the lattice of fuzzy congruences of A. U.M. Swamy et al.[16]
studied about L-fuzzy filters of an ADL. In [1] Berhanu Assaye Alaba and Geza-
hagne Mulat Addis studied on fuzzy congruence relations on an ADL A and they
give the smallest fuzzy congruence on A such that its quotient is a distributive
lattice.

This paper comprises of four sections the first two sections deals on the in-
troductory and preliminary concepts. In section 3, we studied on β-fuzzy filters
of stone almost distributive lattices. An isomorphism of the lattice of β-fuzzy
filters of a Stone ADL A onto the lattice of fuzzy ideals of B0(A) is established.
We proved that any β-fuzzy filter of a Stone ADL A is an e-fuzzy filter of A.
In section 4, we discuss on some properties of prime β-fuzzy filters and some
topological concepts on the collection of prime β-fuzzy filters of a Stone ADL A.
Further we show that the collection T = {Xβ(λ) : λ is a fuzzy ideal of A} is a
topology on FSpecβ(A) where Xβ(λ) = {µ ∈ FSpecβ(A) : λ ⊈ µ}.

2. Preliminaries

This section devoted on definitions and results which will be used in the
sequel.

Definition 2.1. [3] Let L be a lattice. A unary operation C on L is a closure
operator if C satisfies the following conitions:

(1) x ≤ y implies C(x) ≤ C(y) for all x, y ∈ L,
(2) x ≤ C(X) for all x ∈ L,
(3) C(x) = C2(x) for all x ∈ L.

Definition 2.2. [3] The map φ : P0 → P1 is an isotone map (also called mono-
tone map or order-preserving niap) of the poset P0 into the poset PP1 iff x ≤ b
in P0, implies that φ(a) ≤ φ(b), in P1.

Recall that ZORN’S LEMMA: Let A be a set and let X be a nonvoid subset
of P (A). Let us assume that X has the following property: If C is a chain
in(X;⊆), then ∪(X : X ∈ C) ∈ X. Then X has a maximal member.

Definition 2.3. [11] An algebra (A,∨,∧, 0) of type (2, 2, 0) is called an Almost
Distributive Lattice if it satisfies the following conditions for all x, y and z ∈ A:

(1) 0 ∧ x = 0,
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(2) x ∨ 0 = x,
(3) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(4) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),
(5) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z),
(6) (x ∨ y) ∧ y = y.

Let x, y ∈ A, we read x is less than or equal to y and write x ≤ y if x∧ y = x,
equivalently x ∨ y = y. If an element m is maximal with respect to the partial
ordering ≤ on A, then m is said to be maximal.

If (A,∨,∧, 0) is an ADL, for any x, y ∈ A, define x ≤ y if and only if x = x∧y
(or equivalently, x ∨ y = y), then ≤ is a partial ordering on A.

Theorem 2.4. [11] Let A be an ADL and m ∈ A. Then the following are
equivalent:

(1) m is maximal with respect to ≤
(2) m ∨ x = m
(3) m ∧ x = x

for all x ∈ A.
Definition 2.5. [12]

Let (A,∨,∧, 0) be an ADL. Then for any x, y, z ∈ A, we have the following:

(1) x ∨ y = x⇔ x ∧ y = y,
(2) x ∨ y = y ⇔ x ∧ y = x,
(3) ∧ is associative in A,
(4) x ∧ y ∧ z = y ∧ x ∧ z,
(5) x ∧ t ∧ z = y ∧ x ∧ z,
(6) (x ∨ y) ∧ z = (y ∨ x) ∧ z
(7) x ∧ y = 0⇔ y ∧ x = 0,
(8) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),
(9) x ∧ (x ∨ y) = x, (x ∧ y) ∨ y = y andx ∨ (y ∧ x) = x,
(10) x ≤ x ∨ y andx ∧ y ≤ y,
(11) x ∧ x = x and x ∨ x = x,
(12) 0 ∨ x = x and x ∧ 0 = 0,
(13) If x ≤ z, y ≤ z then x ∧ y = y ∧ x and x ∨ y = y ∨ x.
Let J be a non-empty subset of an ADL A. For any x, y ∈ J and z ∈ A if

x∨y ∈ J(x∧y ∈ J) and x∧z ∈ J(z∨x ∈ J), then J is said to be an ideal(filter)
of A respectively [11]. For any two elements J and K of the set I(A) of all ideals
of A, define J ∩ K is the infimum and J ∨ K = {x ∨ y : x ∈ J, y ∈ K} is the
supremum of J and K. Clearly I(A) is a bounded distributive lattice with least
element {0} and greatest element A under set inclusion. A proper ideal J of A
is called a prime ideal if, for any a, b ∈ A, a ∧ b ∈ J ⇒ a ∈ J or b ∈ J . Let K be
a proper ideal of A. K is said to be maximal if it is not properly contained in
any proper ideal of A.

For any A ⊆ L, Ann{A} = {x ∈ L : a ∧ x = 0 for all a ∈ A} is an ideal of L.
We write Ann{(a]} for Ann{a}. Then clearly Ann{(0]} = L and Ann{L} = (0].
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Definition 2.6. [7] Let A be an ADL and a ∈ A. Then define Ann{a} = {x ∈
A : a∧ x = 0}. Clearly, Ann{a} is an ideal in A and hence an annihilator ideal.

Definition 2.7. [13] Let (A,∨,∧, 0) be an ADL. Then a unary operation x→ x∗

on A is called a pseudo-complementation on A if, for any x, y ∈ A, it satisfies
the following conditions:

(1) x ∧ y = 0⇒ x∗ ∧ y = y,
(2) x ∧ x∗ = 0,
(3) (x ∨ y)∗ = x∗ ∧ y∗,

Then (A,∨,∧,∗ , 0) is called a pseudo-complemented ADL.

Here, the unary operation ∗ is called a pseudo-complementation on A and x∗ is
called a pseudo-complement of x in A. An element x of a pseudo-complemnted
ADL A is called a dense element if x∗ = 0. Now denote the set of all dense
elements of A by D.

Theorem 2.8. [13] Let A be an ADL and ∗, a pseudo-complementation on A.
Then, for any x, y ∈ A, we have the following:

(1) 0∗ is a maximal,
(2) If x is maximal, then x∗ = 0,
(3) 0∗∗ = 0,
(4) x∗∗ ∧ x = x,
(5) x∗∗ = x,
(6) x ≤ y ⇒ y∗ ≤ x∗,
(7) x∗ ∧ y∗ = y∗ ∧ x∗,
(8) (x ∧ y)∗∗ = x∗∗ ∧ y∗∗.

Definition 2.9. [14] Let A be an ADL and ∗ a pseudo-complementation on A.
Then A is called Stone ADL if, for any a ∈ A, a∗ ∨ a∗∗ = 0∗ .

Lemma 2.10. [14] For any two elements x and y of a Stone ADL A the following
conditions hold:

(1) 0∗ ∧ x = x and 0∗ ∨ x = 0∗

(2) (x ∧ y)∗ = x∗ ∨ y∗.

Definition 2.11. [7] For any filter F of a Stone ADL A, define an extension of
F as the set F e = {x ∈ A/x∗ ∈ Ann{a} for some a ∈ F}.

Definition 2.12. [7] A filter F of a Stone ADL A is called an e-filter of A if
F = F e.

Definition 2.13. [9] Let A be a Stone ADL with maximal elements. Then for
any x ∈ A, define (x)+ = {y ∈ A : y ∨ x∗ is a maximal element of A}. We call
(x)+ as booster of x.

We denote the set of all boosters of a Stone ADL A by B0(A).

Definition 2.14. [9] Let A be a Stone ADL. Then the following hold:
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(1) For any filter F of A, define an operator β as

β(F ) = {(x)+|x ∈ F},

(2) For any ideal I of B0(A), define an operator
←−
β as

←−
β (I) = {x ∈ A|(x)+ ∈

I}.

Definition 2.15. A filter F of A is called a β-filter if
←−
β β(F ) = F .

Remember that, for any set S a function µ : S −→ ([0, 1],∧,∨) is called
a fuzzy subset of S, where [0, 1] is a unit interval, α ∧ β = min{α, β} and
α ∨ β = max{α, β} for all α, β ∈ [0, 1].

Definition 2.16. [16] Let ν be a fuzzy subset of an ADL A. For any α ∈ [0, 1],
we denote the level subset by να and defined as

να = {a ∈ A : α ≤ ν(a)}.

Theorem 2.17. [16]
For any fuzzy subset ν of an ADL A the following are equivalent.

(1) ν is a fuzzy filter of A,
(2) ν(m) = 1 for all maximal element m and ν(s ∧ t) = ν(s) ∧ ν(t), for all

s, t ∈ A,
(3) ν(m) = 1 for all maximal element m and λ(s ∨ t) ≥ λ(s) ∨ ν(t) and

ν(s ∧ t) ≥ ν(s) ∧ ν(t), for all s, t ∈ A.

We define the binary operations ” + ” and ”.” on all fuzzy subsets of an
ADL A as: (µ + θ)(s) = sup{µ(x) ∧ θ(y) : x, y ∈ A, x ∨ y = s} and (µ.θ)(s) =
sup{µ(x) ∧ θ(y) : x, y ∈ A, x ∧ y = s} for any s ∈ A.

The intersection of fuzzy filters of A is a fuzzy filter. However the union of
fuzzy filters may not be fuzzy filter. The least upper bound of a fuzzy filters µ
and θ of A is denoted as µ ∨ θ = ∩{σ ∈ FF (A) : µ ∪ θ ⊆ σ}.

If µ and θ are fuzzy filters of A, then µ.θ = µ ∨ θ and µ+ θ = µ ∩ θ.

3. β-fuzzy filters in Stone ADLs

Definition 3.1. Let ν be a fuzzy filter of a Stone ADL A and µ be a fuzzy ideal

of B0(A). Then we define operators β and
←−
β as follows:

(1) β(ν)((s)+) = sup{ν(t) : (s)+ = (t)+, t ∈ A}, for any s in A.

(2)
←−
β (µ)(s) = µ((s)+), for any s in A.

Lemma 3.2. Let A be a Stone ADL with maximal elements. Then for any
fuzzy ideals µ and θ of B0(A) and for any fuzzy filters ν and η of A we have the
following:

(1) β(ν) is a fuzzy ideal of B0(A),
(2)
←−
β (µ) is a fuzzy filter of A,



450 Teferi Getachew Alemayehu, Yeshiwas Mebrat Gubena

(3) ν ⊆ η implies β(ν) ⊆ β(η),
(4) µ ⊆ θ implies

←−
β (µ) ⊆

←−
β (θ).

Proof. (1) Let ν be a fuzzy filter of A. Then clearly β(ν)((m)+) = 1. For any
(a)+, (b)+ in B0(A),

β(ν)((a)+) ∧ β(ν)((b)+) = sup{ν(s) : (s)+ = (a)+} ∧ sup{ν(t) : (t)+ = (b)+}
= sup{ν(s) ∧ ν(t) : (s)+ = (a)+, (t)+ = (b)+}
≤ sup{ν(s ∧ t) : (s ∧ t)+ = (a ∧ b)+}
= β(ν)((a ∧ b)+) = β(ν)((a)+ ⊔ (b)+),

β(ν)((a)+) ∨ β(ν)((b)+) = sup{ν(s) : (s)+ = (a)+} ∨ sup{ν(t) : (t)+ = (b)+}
= sup{ν(s) ∨ ν(t) : (s)+ = (a)+, (t)+ = (b)+}
≤ sup{ν(s ∨ t) : (s ∨ t)+ = (a ∨ b)+}
= β(ν)((a ∨ b)+)
= β(ν)((a)+ ∩ (b)+).

Therefore, β(ν) is a fuzzy ideal of B0(A).
(2) For any fuzzy ideal µ of B0(A).

←−
β (µ)(m) = µ((m)+) = 1. For any a, b in

A,

←−
β (µ)(a ∧ b) = µ((a ∧ b)+)

= µ((a)+ ⊔ (b)+)

≥ µ((a)+) ∧ µ((b)+)

=
←−
β (µ)(a) ∧

←−
β (µ)(b)

←−
β (µ)(a ∨ b) = µ((a ∨ b)+)

= µ((a)+ ∩ (b)+)

≥ µ((a)+) ∨ µ((b)+)

=
←−
β (µ)(a) ∨

←−
β (µ)(b)

This implies
←−
β (µ) is a fuzzy filter of A.

(3) Suppose that ν and η are fuzzy filters of A such that ν ⊆ η.
β(ν)((x)+) = sup{ν(y) : (y)+ = (x)+} ≤ sup{η(y) : (y)+ = (x)+} = β(η)((x)+).
Therefore β is an isotone.

(4) Similar with the proof of (3). □

Lemma 3.3. Let A be a Stone ADL. Then the map η 7→
←−
β β(η) is a closure

operator on fuzzy filter of A. i.e., for any η, ν ∈ FF(A),

(1) η ⊆
←−
β β(η),

(2) η ⊆ ν ⇒
←−
β β(η) ⊆

←−
β β(ν),

(3)
←−
β β{
←−
β β(ν)} =

←−
β β(ν).
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Proof. (1) For any x ∈ A,
←−
β β(η)(x) = sup{η(y) : (x)+ = (y)+} ≥ η(x).

Thus η ⊆
←−
β β(η)

(2) It is obvious, since β and
←−
β are isotones.

(3) For any s ∈ A,
←−
β β{
←−
β β(ν)}(s) = β{

←−
β β(ν)}((s)+)

= sup{
←−
β β(ν)(t) : (t)+ = (s)+, t ∈ A}

= sup{β(ν)((t)+) : (t)+ = (s)+, t ∈ A}

= β(ν)((s)+) =
←−
β β(ν)(s).

□

Theorem 3.4. Let A be a Stone ADL. Then β is a homomorphism of the lattice
of fuzzy filters of A into the lattice of fuzzy ideals of B0(A).

Proof. Let FF(A) be the set of all fuzzy filters of A and FIB0(A) be the set of
all fuzzy ideals in B0(A). For any µ, θ ∈ FF(A), µ ∩ θ ⊆ µ and µ ∩ θ ⊆ θ. This
implies β(µ ∩ θ) ⊆ β(µ) and β(µ ∩ θ) ⊆ β(θ). We have β(µ ∩ θ) ⊆ β(θ) ∩ β(µ).
Also,

(β(µ) ∩ β(θ))((x)+) = β(µ)((x)+) ∧ β(θ)((x)+)
= sup{µ(a)|(a)+ = (x)+} ∧

sup{θ(b)|(b)+ = (x)+}
≤ sup{µ(a ∨ b) : (a ∨ b)+ = (x)+} ∧

sup{θ(a ∨ b) : (a ∨ b)+ = (x)+}
= sup{µ(a ∨ b) ∧ θ(a ∨ b) : (a ∨ b)+ = (x)+}
= sup{(µ ∩ θ)(a ∨ b) : (a ∨ b)+ = (x)+}
= β(µ ∩ θ)((x)+).

Thus β(µ ∩ θ) = β(µ) ∩ β(θ).
Since µ ⊆ µ ∨ θ and θ ⊆ µ ∨ θ, β(µ) ⊆ β(µ ∨ θ) and β(µ) ⊆ β(µ ∨ θ). This gives
β(µ) ⊔ β(θ) ⊆ β(µ ∨ θ). Again

(β(µ ∨ θ))((x)+) = sup{(µ ∨ θ)(a)|(a)+ = (x)+}
= sup{sup{µ(a1) ∧ θ(a2)|a = a1 ∧ a2}|(a)+ = (x)+}
≤ sup{sup{µ(b1) ∧ θ(b2)|(b1)+ = (a1)

+,

(b2)
+ = (a2)

+}|(a1 ∧ a2)+ = (x)+}
= sup{sup{µ(b1)|(b1)+ = (a1)

+} ∧
sup{θ(b2)|(b2)+ = (a2)

+}|(a1)+ ⊔ (a2)
+ = (x)+}

= sup{β(µ)((a1)+) ∧ β(θ)((a2)+)|(a1)+ ⊔ (a2)
+ =

(x)+}
= (β(µ) ⊔ β(θ))((x)+)



452 Teferi Getachew Alemayehu, Yeshiwas Mebrat Gubena

This implies β(µ ∨ θ) ⊆ β(µ) ⊔ β(µ). Therefore, β(µ ∨ θ) = β(µ) ⊔ β(θ) and
clearly χ{1}, χA are the smallest and the largest fuzzy filters of A respectively
and also β(χ{1}), β(χA) are the smallest and the greatest fuzzy ideals of B0(A)
respectively. Therefore β is a homomorphism from FF(A) into FIB0(A). □

Corollary 3.5. For any two fuzzy filter µ and θ of a Stone ADL A, we have←−
β β(µ ∩ θ) =

←−
β β(µ) ∩

←−
β β(θ).

Proof. By Theorem 3.4 , β(µ ∩ θ) = β(µ) ∩ β(θ). Thus for any t ∈ A, we get
←−
β β(µ ∩ θ)(t) = β(µ ∩ θ)((t)+)

= β(µ)((t)+) ∧ β(θ)((t)+)

=
←−
β β(µ)((t)) ∧

←−
β β(θ)((t))

Therefore
←−
β β(µ ∩ θ) =

←−
β β(µ) ∩

←−
β β(θ). □

Now we introduce the notion of β-fuzzy filters in stone ADL.

Definition 3.6. A fuzzy filter µ of a Stone ADL A is called a β-fuzzy filter if←−
β β(µ) = µ.

Example 3.7. Let A = {0, a, b, c}. Define the binary operations ∨ and ∧ on A
as follows:

∨ 0 a b c
0 0 a b c
a a a a a
b b b b b
c c a b c

∧ 0 a b c
0 0 0 0 0
a 0 a b c
b 0 a b c
c 0 c c c

and define x∗ = 0 if x ̸= 0 and 0∗ = a. Then (A,∨,∧, 0) is a Stone ADL with
0 and x 7→ x∗ is a pseudo-complementation on A. For fuzzy subsets µ and λ
of A, define µ(0) = 0.5, µ(a) = µ(b) = µ(c) = 1, λ(0) = 0.5, λ(a) = λ(b) =
1 and λ(c) = 0.7.

It is easy to verify that µ is a β-fuzzy filter of A and λ is not β-fuzzy filter of
A.

In the following Theorem, we characterize β-fuzzy filters in terms of level
subsets and characteristic functions.

Theorem 3.8. Let µ be a proper fuzzy subset of a Stone ADL A. Then µ is a
β-fuzzy filter if and only if µα is a β-filter of A, ∀α ∈ [0, 1].

Proof. Suppose that µ is a β-fuzzy filter of A. Then (
←−
β β(µ))α = µα.

To prove each level subset of µ is a β-filter of A, it is enough to show
←−
β β(µα) =

µα. Clearly µα ⊆
←−
β β(µα). Next, let x ∈

←−
β β(µα). Then (x)+ ∈ β(µα). This

implies there exists y ∈ µα such that (x)+ = (y)+, and so µ(y) ≥ α such that
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(x)+ = (y)+. This gives β(µ)((x)+) = sup{µ(y) : (x)+ = (y)+} ≥ α and so
←−
β β(µ)(x) ≥ α. We have x ∈ (

←−
β β(µ))α = µα. Thus

←−
β β(µα) ⊆ µα. Therefore,

←−
β β(µα) = µα.

Conversely, from Lemma 3.3 we get µ ⊆
←−
β β(µ). Next, let α =

←−
β β(µ)(x) =

sup{µ(y) : (y)+ = (x)+}. Then for each ϵ > 0, there is a ∈ A, (a)+ = (x)+ such
that µ(a) > α − ϵ. Since ϵ is arbitrary then µ(a) ≥ α such that (a)+ = (x)+.
This implies a ∈ µα for (a)+ = (x)+. This implies (x)+ = (a)+ ∈ β(µ). Thus

x ∈
←−
β β(µα) = µα. Hence µ(x) ≥ α =

←−
β β(µ)(x). Therefore, µ =

←−
β β(µ). □

Corollary 3.9. For a nonempty subset F of a Stone ADL A, F is a β-filter if
and only if χF is β-fuzzy filter of A.

In the following Theorem, the class of all β-fuzzy filters of an MS-algebra can
be characterized in terms of boosters.

Theorem 3.10. A fuzzy filter µ of a Stone ADL A is a β-fuzzy filter if and
only if for all x, y ∈ A, (x)+ = (y)+ implies µ(x) = µ(y).

Proof. Suppose that µ is a β-fuzzy filter of A. Then µ(x) =
←−
β β(µ)(x),∀x ∈ A.

For any x, y ∈ A assume that (x)+ = (y)+. This implies µ(x) =
←−
β β(µ)((x) =

β(µ)((x)+) = β(µ)((y)+) =
←−
β β(µ)(y) = µ(y).

Conversely, suppose that ∀x, y ∈ A, (x)+ = (y)+ implies µ(x) = µ(y). Now
←−
β β(µ)(x) = sup{µ(y) : (y)+ = (x)+} = µ(x). Therefore,

←−
β β(µ) = µ. □

Theorem 3.11. Let {µi : i ∈ Ω} be a family of β-fuzzy filters in A. Then
∩i∈Ωµi is a β-fuzzy filter of A.

It can be observed that β-fuzzy filters are simply the closed elements with
respect to the closure operation of Lemma 3.3

Corollary 3.12. Let A be a Stone ADL with maximal elements. Then the set
FFβ(A) of all β-fuzzy filters of A is a complete distributive lattice with relation
⊆. The supremum and infimum of any subfamily {µi|i ∈ Ω} of β-fuzzy filters

are
←−
β β(

∨
i∈Ω µi) and ∩i∈Ωµi respectively, where

∨
i∈Ω µi is their supremum in

the lattice of fuzzy filters of A.

Proof. By Theorem 3.11, ∩i∈Ωµi is the greatest lower bound of any sub family
{µi : i ∈ Ω} of β-fuzzy filters of A.

Clearly
←−
β β(

∨
i∈Ω µi) is an upper bound of {µi : i ∈ Ω}. Let E be any β-fuzzy

filter such that µi ⊆ E for all i ∈ Ω.

⇒
∨
i∈Ω

µi ⊆ E

⇒
←−
β β(

∨
i∈Ω

µi) ⊆
←−
β β(E) = E

This implies
←−
β β(

∨
µi) is least upper bound of {µi : i ∈ Ω}.
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Next, we show distributivity of A. Let µ, θ, ν ∈ FFβ(A),

µ ∩ (θ ⊔ ν) =
←−
β β(µ) ∩

←−
β β(θ ∨ ν)

=
←−
β β(µ ∩ (θ ∨ ν))

=
←−
β β(µ ∩ θ) ∨ (µ ∨ ν))

= (µ ∩ θ) ⊔ (µ ∨ ν).

This implies the set of all β-fuzzy filters FFβ(A) of A is a complete distributive
lattice. □

Lemma 3.13. For any fuzzy ideal µ of B0(A), β
←−
β (µ) = µ.

Proof. Let (x)+ ∈ B0(A). Now β
←−
β (µ)((x)+) = sup{

←−
β (µ)(y) : (y)+ = (x)+} =

sup{µ((y)+) : (y)+ = (x)+} = µ((x)+). Therefore β
←−
β (µ) = µ. □

Using Corollary 3.12 and Lemma 3.13 , we prove that the lattice of β-fuzzy
filters of L is isomorphic to the lattice of fuzzy ideals of B0(A).

Theorem 3.14. Let A be a Stone ADL with maximal elements. Then there
is an isomorphism of the lattice of β-fuzzy filters of A onto the lattice of fuzzy
ideals of B0(A).

Proof. Let FFβ(A) be the set of all β-fuzzy filters of A, FIB0(A) be the set
of all fuzzy ideals of B0(A) and f : FFβ(A)→ FIB0(A) be a mapping defined
by f(µ) = β(µ), for any µ ∈ FFβ(A) . Then clearly f is one-to-one. Let µ

be any fuzzy ideal of B0(A). Then
←−
β (µ) is a fuzzy filter of A. By Lemma

3.13,
←−
β β(
←−
β (µ)) =

←−
β (β
←−
β (µ)) =

←−
β (µ). Thus

←−
β (µ) is a β-fuzzy filter of A.

Now f(
←−
β (µ)) = β(

←−
β (µ)) = µ. This gives f is onto. Let µ, θ be any two β-

fuzzy filters of A. Then clearly f(µ ∩ θ) = β(µ ∩ θ) = β(µ) ∩ β(θ). Again

f(
←−
β β(µ ∨ θ)) = β(

←−
β β(µ ∨ θ)) = β(µ ∨ θ) = β(µ) ⊔ β(θ). Therefore f is an

isomorphism of the lattice of β-fuzzy filters of A onto the lattice of fuzzy ideals
of B0(A). □

In the following Theorem, we show that the relation between e-fuzzy filter
and β-fuzzy filter

Theorem 3.15. Any β-fuzzy filter of a Stone ADL A is an e-fuzzy filter of A.

Proof. Suppose that µ is β-fuzzy filter of A.

µ(x) = β
←−
β (µ)

= sup{µ(y) : (x)+ = (y)+, for some y ∈ A}
≥ µ(x∗∗) as (x)+ = (x∗∗)+

Clearly µ(x) ≤ µ(x∗∗). Hence µ(x
∗∗
) = µ(x) for all x ∈ A. Therefore every

β-fuzzy filter of A is and e-fuzzy filter of A. □
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4. Prime β-Fuzzy Filters and the space of prime β- fuzzy filters of a
Stone Almost Distributive Lattice

In this section, we have discussed some properties of prime β-fuzzy filters and
some topological concepts on the collection of prime β-fuzzy filters of a stone
ADL.

Corollary 4.1. Let A be a stone ADL. Then the prime β-fuzzy filters of A are
one to one correspondence with the prime fuzzy ideals of B0(A).

Proof. From Theorem 3.14, we have seen that β-fuzzy filters of A are one to
one correspondence with the fuzzy ideals of B0(A). Now we prove that if µ is
a prime β-fuzzy filter of A, then β(µ) is a prime fuzzy ideal of B0(A) and vice
versa. Let µ be a prime β-fuzzy filter of A. Then β(µ) is a fuzzy ideal of B0(A).
Let θ and ν be any fuzzy ideals of B0(A). Then there exist β-fuzzy filters of A,
say ϕ and ψ such that θ = β(ϕ) and ν = β(ψ). Assume β(ϕ) ∩ β(ψ) ⊆ β(µ).
Then β(ϕ ∩ ψ) ⊆ β(µ) and so ϕ ∩ ψ ⊆ µ. Since µ is a prime β-filter of A, then
ϕ ⊆ µ or ψ ⊆ µ. This gives β(ϕ) ⊆ β(µ) or β(ψ) ⊆ β(µ).

Conversely, let µ be a prime fuzzy ideal of B0(A). Then there exists a β-fuzzy
filter η of A such that µ = β(η). Let ϕ and ψ be any fuzzy filters of A such that
ϕ ∩ ψ ⊆ η. Then β(ϕ ∩ ψ) = β(ϕ) ∩ β(ψ) ⊆ β(η). Since β(η) is a prime ideal
of A, then β(ϕ) ⊆ β(η) or β(ψ) ⊆ β(η) and so ϕ ⊆ η or ψ ⊆ η. This implies
η is a prime β-fuzzy filter of A. Thus prime β-fuzzy filters of A are one to one
correspondence with the prime fuzzy ideals of B0(A). □

In the following Theorem we prove the existence of prime β-fuzzy filters in
stone ADL.

Theorem 4.2. Let α ∈ [0, 1), µ be a β-fuzzy filter and σ be a fuzzy ideal of a
stone ADL A such that µ ∩ σ ≤ α. Then there exists a prime β-fuzzy filter η
such that µ ⊆ η and η ∩ σ ≤ α.

Proof. Put ξ = {θ ∈ FFβ(A) : µ ⊆ θ, θ ∩ σ ≤ α}. Clearly µ ∈ ξ, ξ ̸= ∅,
and (ξ,⊆) is a poset. Let Q = {µi : i ∈ Ω} be a chain in ξ. We prove that
∪i∈Ωµi ∈ ξ. Clearly (∪i∈Ωµi)(1) = 1. For any x, y ∈ A,

(∪i∈Ωµi)(x) ∧ (∪i∈Ωµi)(y) = sup{µi(x) : i ∈ Ω} ∧ sup{µj(y) : j ∈ Ω}
= sup{µi(x) ∧ µj(y) : i, j ∈ Ω}
≤ sup{(µi ∪ µj)(x) ∧ (µi ∪ µj)(y) : i, j ∈ Ω}

Since Q is a chain, µi ⊆ µj or µj ⊆ µi. Without loss of generality, assume
µj ⊆ µi. This implies µi ∪ µj = µi. This shows,

(∪i∈Ωµi)(x) ∧ (∪i∈Ωµi)(y) ≤ sup{µi(x) ∧ µi(y), i ∈ Ω}
= sup{µi(x ∧ y), i ∈ Ω}
= (∪i∈Ωµi)(x ∧ y)
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Again (∪i∈Ωµi)(x) = sup{µi(x) : i ∈ Ω} ≤ sup{µi(x∨y) : i ∈ Ω} = (∪i∈Ωµi)(x∨
y). Similarly (∪i∈Ωµi)(y) ≤ (∪i∈Ωµi)(x∨y). This implies (∪i∈Ωµi)(x)∨(∪i∈Ωµi)(y)
≤ (∪i∈Ωµi)(x∨y). Hence ∪i∈Ωµi is a fuzzy filter of A. Now prove that (∪i∈Ωµi)
is a β-fuzzy filter.

←−
β β(∪i∈Ωµi)(x) = sup{(∪i∈Ωµi)(a) : (x)

+ = (a)+, a ∈ L}
= sup{sup{(µi)(a) :, i ∈ Ω} : (x)+ = (a)+, a ∈ L}
= sup{sup{(µi)(a) : (x)

+ = (a)+, a ∈ L}, i ∈ Ω}

= sup{
←−
β β(µi)(x), i ∈ Ω} = sup{µi(x), i ∈ Ω}

= (∪i∈Ωµi)(x)

Thus ∪i∈Ωµi is a β-fuzzy filter of A. Since µi ∩ σ ≤ α for each i ∈ Ω,

((∪i∈Ωµi) ∩ σ)(x) = (∪i∈Ωµi)(x) ∧ σ(x)
= sup{µi(x), i ∈ Ω} ∧ σ(x)
= sup{µi(x) ∧ σ(x), i ∈ Ω}
= sup{(µi ∧ σ)(x), i ∈ Ω} ≤ α

Thus (∪i∈Ωµi) ∩ σ) ≤ α. Hence ∪i∈Ωµi ∈ ξ. By applying Zorn’s Lemma, we
get a maximal element, say δ, i.e., δ is a β-fuzzy filter of A such that µ ⊆ δ
and δ ∩ σ ≤ α. Next we show that δ is a prime β-fuzzy filter of A. Assume
that δ is not a prime β-fuzzy filter. Let λ1, λ2 ∈ FF (A), and λ1 ∩ λ2 ⊆ δ such

thatλ1 ⊈ δ and λ2 ⊈ δ. If we put δ1 =
←−
β β(λ1 ∨ δ) and δ2 =

←−
β β(λ2 ∨ δ), then

both δ1, δ2 are β-fuzzy filters of A properly containing δ. Since δ is a maximal
in ξ, we get δ1, δ2 /∈ ξ. This indicates δ1 ∩ σ ≰ α and δ2 ∩ σ ≰ α. This implies
there exist x, y ∈ A such that (δ1 ∩ σ)(x) > α and (δ2 ∩ σ)(y) > α. We have
(δ1 ∩ σ)(x ∨ y) ∧ (δ2 ∩ σ)(x ∨ y) ≥ (δ1 ∩ σ)(x) ∧ (δ2 ∩ σ)(y) > α, which implies

α < (δ1 ∩ σ)(x ∨ y) ∧ (δ2 ∩ σ)(x ∨ y)
= ((δ1 ∩ θ) ∩ (δ2 ∩ σ))(x ∨ y)
= ((δ2 ∩ δ2) ∩ σ)(x ∨ y)

= ((
←−
β β(λ1 ∨ δ) ∩

←−
β β(λ2 ∨ δ)) ∩ σ)(x ∨ y)

= (
←−
β β((λ1 ∩ λ2) ∨ δ) ∩ σ)(x ∨ y)

= (
←−
β β(δ ∩ σ)(x ∨ y) as λ1 ⊆ δ and λ2 ⊆ δ

= (δ ∩ σ)(x ∨ y)

This shows (δ ∩ σ)(x ∨ y) > α, which is a contradiction δ ∩ σ ≤ α. This δ is a
prime β-fuzzy filter of A. □

Corollary 4.3. Let µ be a fuzzy β-filter and σ be a fuzzy ideal of A such that
µ ∩ σ = 0. Then there exists a prime β-fuzzy filter η such that µ ⊆ η and
η ∩ σ = 0.
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Corollary 4.4. Let α ∈ [0, 1), µ be a β-fuzzy filter of A and µ(x) ≤ α. Then
there exists a prime β-fuzzy filter θ of A such that µ ⊆ θ and θ(x) ≤ α.

Proof. Put ξ = {θ ∈ FFβ(A) : µ ⊆ θ and θ(x) ≤ α}. Clearly µ ∈ ξ, ξ ̸= ∅,
and (ξ,⊆) is a poset. Let Q = {µi : i ∈ Ω} be a chain in ξ. We prove that
∪i∈Ωµi ∈ ξ. By Theorem 4.2, (∪i∈Ωµi) is a β-fuzzy filter of A. Since µi ⊆ θ for
each i ∈ Ω and θ(x) ≤ α.

(∪i∈Ωµi)(x) = sup{µi(x), i ∈ Ω} ≤ θ(x) ≤ α.
Hence ∪i∈Ωµi ∈ ξ. By applying Zorn’s Lemma, we get a maximal element of ξ,
say δ, i.e., δ is an β-fuzzy filter of A such that µ ⊆ δ and δ(x) ≤ α. Next we
show that δ is a prime β-fuzzy filter of A. Assume that δ is not a prime β-fuzzy
filter. Let λ1, λ2 ∈ FF (A), and λ1 ∩ λ2 ⊆ δ such that λ1 ⊈ δ and λ2 ⊈ δ. If we

put δ1 =
←−
β β(λ1 ∨ δ) and δ2 =

←−
β β(λ2 ∨ δ), then both δ1, δ2 are β-fuzzy filters

of A properly containing δ. Since δ is maximal in ξ, we get δ1, δ2 /∈ ξ. Thus we
show that δ1(x) ≰ α and δ2(x) ≰ α. This implies δ1(x) > α and δ2(x) > α. We
get δ1(x) ∧ δ2(x) = (δ1 ∩ δ2)(x) > α, which implies

α < δ1(x) ∧ δ2(x)

= (
←−
β β(λ1 ∨ δ) ∩

←−
β β(λ2 ∨ δ))(x)

= (
←−
β β((λ1 ∩ λ2) ∨ δ))(x)

=
←−
β β(δ)(x) because λ1 ⊆ δ and λ2 ⊆ δ

= δ(x)

This shows δ(x) > α, which is a contradiction δ(x) ≤ α. Thus δ is a prime
β-fuzzy filter of A. □

Corollary 4.5. Every proper β-fuzzy filters of a Stone ADL A is the intersection
of all prime β-fuzzy filters containing it.

Proof. Let µ be a proper β-fuzzy filter of A. Put η = ∩{θ : θ is a prime β-fuzzy
filter such that µ ⊆ θ}. Now, we prove that µ = η. Clearly µ ⊆ η. Suppose
µ(a) < η(a) for some a ∈ A. Put α = µ(a) for some a ∈ A. This implies µ ⊆ µ
and µ(a) ≤ α. Thus by the Corollary 4.4, there exists a prime β-fuzzy filter δ
such that µ ⊆ δ and δ(a) ≤ α, which is contradicts µ(a) < η(a). Thus η ⊆ µ.
Hence µ = η. This implies every proper β-fuzzy filters of A is the intersection
of all prime β-fuzzy filters containing it. □

Let FSpecβ(A) denotes the set of all prime β fuzzy filters of A. For a fuzzy
subset λ of A, define Hβ(λ) = {µ ∈ FSpecβ(A) : λ ⊆ µ}, and Xβ(λ) = {µ ∈
FSpecβ(A) : λ ⊈ µ}, We let λ∗ = λ1 i.e., λ∗ = {x ∈ A : λ(x) = 1}.

Lemma 4.6. For any fuzzy ideals µ and θ of a Stone ADL A, we have the
following:

(1) µ ⊆ θ if and only if Xβ(µ) ⊆ Xβ(θ),
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(2) µ ⊆ θ ⇒ Hβ(θ) ⊆ Hβ(µ),
(3) Xβ(µ) ∩Xβ(θ) = Xβ(µ ∩ θ),
(4) Xβ(µ) ∪Xβ(θ) = Xβ(µ ∨ θ).

Theorem 4.7. The collection T = {Xβ(λ) : λ is a fuzzy ideal of A} is a topology
on FSpecβ(A).

Corollary 4.8. For any x, y ∈ A and γ ∈ (0, 1], the following condition hold:

(1) If x ≤ y, then Xβ(xγ) ⊆ Xβ(yγ)
(2) Xβ(xγ) ∪Xβ(yγ) = Xβ((x ∧ y)γ)
(3) Xβ(xγ) ∩Xβ(yγ) = Xβ((x ∨ y)γ)
(4)

⋃
x∈L, γ∈(0,1])X

β(xγ) = FSpecβ(A)
(5) Xβ([xγ)) = Xβ(xγ),
(6) Xβ(xγ) = ∅ ⇔ x is maximal.

Corollary 4.9. Let B = {Xβ(xγ) : x ∈ A, γ ∈ (0, 1]}. Then B forms a base for
topology on τ .

Corollary 4.10. FSpecβ(A) is a compact space.

Theorem 4.11. The space FSpecβ(A) is a T0-space.

Proof. Let λ, ν ∈ FSpecβ(A) such that λ ̸= ν. Then either λ ⊈ ν or ν ⊈ λ.

Without loss of generality we can assume that λ ⊈ ν. Then ν ∈ Xβ(λ) and

λ /∈ Xβ(λ). Thus FSpecβ(A) is a T0-space. □

Theorem 4.12. For any fuzzy ideal λ of a Stone ADL A , Xβ(λ) = Xβ(λβ).

Proof. Clearly λ ⊆ λβ for any fuzzy ideal λ of A. Then Xβ(λ) ⊆ Xβ(λβ).
Conversely, let ν ∈ Xβ(λβ). Then λβ ⊈ ν. Suppose that ν /∈ Xβ(λ), then

λ ⊆ ν. This implies λβ ⊆ νβ = ν. Which is impossible. Thus ν ∈ Xβ(λ) and so
Xβ(λβ) ⊆ Xβ(λ). Hence Xβ(λ) = Xβ(λβ). □

Theorem 4.13. For any fuzzy ideal λ of a Stone ADL A Xβ(λ) = ∪xγ∈λX
β(xγ).

Proof. Let xγ ∈ λ. Then xγ ⊆ λ. This implies Xβ(xγ) ⊆ Xβ(λ) and so
∪xγ∈λX

β(xγ) ⊆ Xβ(λ). Conversely, ν ∈ Xβ(λ). Then λ ⊈ ν. This implies

there exist xγ /∈ ν for some xγ ∈ λ. This implies λ ∈ Xβ(xγ) for some xγ ∈ λ.
This implies ν ∈ ∪xγ∈λX

β(xγ). Hence Xβ(λ) ⊆ ∪xγ∈λX
β(xγ). Thus Xβ(λ) =

∪xγ∈µX
β(xγ). □

Theorem 4.14. The lattice FFβ(A) is isomorphic with the lattice of all open
sets FSpecβ(A).

Proof. The lattice of all open sets in FSpecβ(A) is (T ,∩,∪).
Define the mapping f : FFβ(A)→ T by f(λ) = Xβ(λ) for all λ ∈ FSpecβ(A).
Let λ, ν ∈ FFβ(A). Then f(λ⊔ν) = f((λ∨ν)β) = Xβ((λ∨ν)β) = Xβ(λ∨ν) =
Xβ(λ) ∪Xβ(ν) = f(λ) ∪ f(ν), and f(λ ∩ ν) = Xβ(λ ∩ ν) = Xβ(λ) ∩Xβ(ν) =
f(λ) ∩ f(ν). This shows f is homomorphism. Since Xβ(λ) = Xβ(λβ) and λβ ∈
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FFβ(A)(A), ∀Xβ(λ) ∈ T , there exists λβ ∈ FFβ(A) such that f(λβ) = Xβ(λ).
Hence f is onto. Next we prove that f is one to one. Let f(λ) = f(ν). Suppose
that λ ̸= ν , then there exists x ∈ A such that either λ(x) < ν(x) or ν(x) < λ(x).
Without loss of generality, we can assume that λ(x) < ν(x). Put λ(x) = γ, then
by Corollary 4.4 , we can find a prime fuzzy ideal δ of A such that λ ⊆ δ and
δ(x) ≤ γ. This implies δ /∈ Xβ(λ) and ν ⊈ δ. This show that δ ⊈ Xβ(λ) and

δ ∈ Xβ(ν). Which is a contradiction f(λ) = f(ν). Thus λ = λ. Hence f is an
isomorphism. □

For any fuzzy subset ν of A, Xβ(ν) = {λ ∈ FSpecβ(A) : ν ⊈ λ} is open set

of FSpecβ(A) and Hβ(ν) = FSpecβ(A) −Xβ(ν) is a closed set of FSpecβ(A).
Also every closed set in FSpecβ(A) is the form of Hβ(ν) for all fuzzy subset of
A. Then we have the following:

Theorem 4.15. The closure of any B ⊆ FSpecβ(A) is given by B = Hβ(∩λ∈Bλ).

Proof. Let B ⊆ FSpecβ(A) and η ∈ B. Then ∩λ∈Bλ ⊆ η. Thus η ∈ Hβ(η) ⊆
Hβ(∩λ∈Bλ). Therefore, H

β(∩λ∈Bλ) is a closed set containing B. Let C be any
closed set containing B in FSpecβ(A) . Then C = Hβ(ν) for some fuzzy subset
ν of A. Since B ⊆ C = Hβ(ν), we have ν ⊆ λ for all λ ∈ B. Hence λ ⊆ ∩λ∈Bλ.
Therefore, Hβ(∩λ∈Bλ) ⊆ Hβ(ν) = C. Hence Hβ(∩ν∈Bλ) is the smallest closed
set containing B. Therefore, B = Hβ(∩λ∈Bλ). □

5. Conclusion and Future Work

In this paper, we studied on β-fuzzy filters of Stone almost distributive lattices
and their properties. An isomorphism between the lattice of β-fuzzy filters of
a Stone ADL A onto the lattice of fuzzy ideals of the set of all boosters of A
is established. We discuss on some properties of prime β-fuzzy filters and some
topological concepts on the collection of prime β-fuzzy filters of a Stone ADL.
Further we show that the collection T = {Xβ(λ) : λ is a fuzzy ideal of A} is a
topology on FSpecβ(A) where Xβ(λ) = {µ ∈ FSpecβ(A) : λ ⊈ µ}. We proved
that any β-fuzzy filter of A is an e-fuzzy filter of A. However the converse of it is
an open problem. In addition to these in the future we will study, soft β- filters
of Stone almost distributive lattices, soft β-filters of Stone almost distributive
lattices, soft e-fuzzy filters of Stone almost distributive lattices and soft β- fuzzy
filters of Stone almost distributive lattices.
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