DOI QR코드

DOI QR Code

Severe acid rain simulation using geotechnical experimental tests with mathematical modeling

  • Raheem, Aram M. (Department of Civil Engineering, College of Engineering, University of Kirkuk) ;
  • Ali, Shno M. (Department of Civil Engineering, College of Engineering, University of Kirkuk)
  • 투고 : 2020.04.18
  • 심사 : 2022.04.06
  • 발행 : 2022.06.10

초록

Severe acid rains can be a major source for geotechnical and environmental problems in any soil depending on the acid type and concentration. Hence, this study investigates the individual severe effects of sulfuric, hydrochloric and nitric acids on the geotechnical properties of real field soil through a series of experimental laboratory tests. The laboratory program consists of experimental tests such as consistency, compaction, unconfined compression, pH determination, electrical conductivity, total dissolved salts, total suspended solids, gypsum and carbonates contents. The experimental tests have been performed on the untreated soil and individual acid treated soil for acid concentrations range of 0% to 20% by weight. In addition, a unique hyperbolic mathematical model has been used to predict significant geotechnical characteristics for acid treated soil. The plastic and liquid limits and optimum moisture content have been increased under the effect of all the used acids whereas the maximum dry density and unconfined stress-strain behavior have been decreased with increasing the acid concentrations. Moreover, the used hyperbolic mathematical model has predicted all the geotechnical characteristics very well with a very high coefficient of determination (R2) value and lowest root mean square error (RMSE) estimate.

키워드

참고문헌

  1. Alloway, B.J. and Ayers, D.C. (1998), "Chemical principle of environmental pollution", Water Air Soil Pollut., 102, 216-218. https://doi.org/10.1023/A:1004986209096.
  2. Applin, K.R. and Jersak, J.M. (1986), "Effects of airborne particulate matter on the acidity of precipitation in Central Missouri", Atmos. Environ., 20(5), 965-969. https://doi.org/10.1016/0004-6981(86)90280-5.
  3. ASTM C471M-17ae1. (2017), "Standard Test Methods for Chemical Analysis of Gypsum and Gypsum Products (Metric)", ASTM Int., West Conshohocken, PA, USA. https://doi.org/10.1520/C0471M-17AE01.
  4. ASTM D1125-14. (2014), "Standard Test Methods for Electrical Conductivity and Resistivity of Water", ASTM Int., West Conshohocken, PA, USA. https://doi.org/10.1520/D1125-14.
  5. ASTM D2166 / D2166M-16. (2016), "Standard Test Method for Unconfined Compressive Strength of Cohesive Soil", ASTM Int., West Conshohocken, PA, USA. https://doi.org/10.1520/D2166_D2166M-16.
  6. ASTM D2216-19. (2019), "Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass", ASTM Int., West Conshohocken, PA, USA. https://doi.org/10.1520/D2216-19.
  7. ASTM D4318-17e1. (2017), "Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils", ASTM Int., West Conshohocken, PA, USA. https://doi.org/10.1520/D4318-17E01.
  8. ASTM D4373-14. (2014), "Standard Test Method for Rapid Determination of Carbonate Content of Soils", ASTM Int., West Conshohocken, PA, USA. https://doi.org/10.1520/D4373-14.
  9. ASTM D4822-88. (2019), "Standard Guide for Selection of Methods of Particle Size Analysis of Fluvial Sediments (Manual Methods)", ASTM Int., West Conshohocken, PA, USA. https://doi.org/10.1520/D4822-88R19.
  10. ASTM D4972-19. (2019), "Standard Test Methods for pH of Soils", ASTM Int., West Conshohocken, PA, USA. https://doi.org/10.1520/D4972-19.
  11. ASTM D5907-18. (2018), "Standard Test Methods for Filterable Matter (Total Dissolved Solids) and Nonfilterable Matter (Total Suspended Solids) in Water", ASTM Int., West Conshohocken, PA, USA. https://doi.org/10.1520/D5907-18.
  12. ASTM D698-12e2. (2012), "Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))", ASTM Int., West Conshohocken, PA, USA. https://doi.org/10.1520/D0698-12E02.
  13. ASTM D854-14. (2014), "Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer", ASTM Int., West Conshohocken, PA, USA. https://doi.org/10.1520/D0854-14.
  14. Awadh, S.M. (2009), "The Atmospheric Pollution of Baghdad City", The Proceeding of 3rd scientific conference of College of Science, University of Baghdad, Iraq, 1727-1740.
  15. Ayers, G.P., Peng, L.C., Fook, L.S., Kong, C.W., Gillett, R.W. and Manins, P.C. (2000), "Atmospheric concentrations and deposition of oxidised sulfur and nitrogen species at Petaling Jaya, Malaysia, 1993-1998", Tellus. B., 52(1), 60-73. https://doi.org/10.3402/tellusb.v52i1.16082.
  16. Bakhshipour, Z., Asadi, A., Huat, B.B.K., Sridharan, A. and Kawasaki, S. (2016a), "Effect of acid rain on geotechnical properties of residual soils", Soils Found., 56(6), 1008-1020. https://doi.org/10.1016/j.sandf.2016.11.006.
  17. Bakhshipour, Z., Asadi, A., Huat, B.B.K. and Sridharan, A. (2016b), "Long-term intruding effects of acid rain on engineering properties of primary and secondary kaolinite clays", Int. J. Geosynth. Ground Eng., 2(21). https://doi.org/10.1007/s40891-016-0059-1.
  18. Bakhshipour, Z., Asadi, A., Sridharan, A. and Huat, B.B.K. (2019), "Acid rain intrusion effects on the compressibility behaviour of residual soils", Environ. Geot., 6(7), 460-470. https://doi.org/10.1680/jenge.15.00081.
  19. Brandenburg, U. and Lagaly, G. (1988), "Rheological properties of sodium montmorillonite dispersions", Appl Clay Sci., 3(3), 263-79. https://doi.org/10.1016/0169-1317(88)90033-6.
  20. Chavali, R.V.P. and Reddy, P.H.P. (2018), "Control of phosphoric acid induced volume change in clays using fly ash", Geomech. Eng., 15(6), 1135-1141. https://doi.org/10.12989/gae.2018.15.6.1135.
  21. Chen, J., Anandarajah, A. and Inyang, H. (2000), "Pore fluid properties and compressibility of kaolinite", J. Geotech. Geoenviron. Eng., 126(9), 798-807. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:9(798).
  22. Colls, J. (2002), Air Pollution, (2nd Ed.), Spon Press, New York, USA.
  23. Corwin, D.L. and Yemoto, K. (2020), "Salinity: electrical conductivity and total dissolved solids", Soil Sci. Soc. Am. J., 84, 1442-1461. https://doi.org/10.1002/saj2.20154.
  24. Dolinar, B. and Trauner, L. (2007), "The impact of structure on the undrained shear strength of cohesive soils", Eng Geol., 92(1-2), 88-96. https://doi.org/10.1016/j.enggeo.2007.04.003.
  25. Edama, N.A., Sulaiman, A., Hamid, K.H.K., Rodhi, M.N.M., Musa, M. and Rahim, S.N.A. (2014), "The effect of hydrochloric acid on the surface area, morphology and physicochemical properties of Sayong kaolinite clay", Key Eng. Mater., 594-595, 49-56. https://doi.org/10.4028/www.scientific.net/KEM.594-595.49.
  26. Gratchev, I. and Towhata, I. (2011), "Compressibility of natural soils subjected to long-term acidic contamination", Environ. Earth Sci., 64(1), 193-200. https://doi.org/10.1007/s12665-010-0838-2.
  27. Gratchev, I. and Towhata, I. (2016), "Compressibility of soils containing kaolinite in acidic environments", KSCE J. Civ. Eng., 20(2), 623-630. https://doi.org/10.1007/s12205-015-0141-6.
  28. Gratchev, I.B. and Sassa, K. (2009), "Cyclic behavior of fine-grained soils at different pH values", J. Geotech. Geoenviron. Eng., 135(2), 271-280. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:2(271).
  29. Hruska, J., Cerny, J. and Krecek, J. (1996), "The acidification in the Czech part of the black triangle region", Proceedings of the CRIEPI Int'l seminar on transport and effects of acidic substances, Tokyo, Japan, Nov. 28-29.
  30. Imai, G., Komatsu, Y. and Fukue, M. (2006), "Consolidation yield stress of Osaka-Bay pleistocene clay with reference to calcium carbonate contents", JASTM Int., 3(7), 1-9. https://doi.org/10.1520/JAI13325.
  31. Kashir, M. and Yanful, E.K. (2001), "Hydraulic conductivity of bentonite permeated with acid mine drainage", Can. Geotech. J., 38(5), 1034-1048. https://doi.org/10.1139/t01-027.
  32. Lin, N.H., Lee, H.M. and Chang, M.B. (1999), "Evaluation of the characteristics of acid precipitation in Taipei, Taiwan using cluster analysis", Water Air Soil Pollut., 113, 241-260. https://doi.org/10.1023/A:1005021209478.
  33. Lu, X., Qian, Z., Zheng, W. and Yang, W. (2016), "Characterization and uncertainty of uplift load-displacement behaviour of belled piers", Geomech. Eng., 11(2), 211-234. https://doi.org/10.12989/gae.2016.11.2.211.
  34. Miyanaga, Y. and Ikeda, H. (1996), "Acidification of surface water and its prediction on Japan", Proceedings of the CRIEPI Int'l seminar on transport and effects of acidic substances, Tokyo, Japan, Nov. 28-29.
  35. Okunade, E.A. (2010), "Geotechnical Properties of Some Coal Fly Ash Stabilized Southwestern Nigeria Lateritic Soils", Mod. Appl. Sci., 4(12), 66-73. https://doi.org/10.5539/mas.v4n12p66.
  36. Osuolale, O.M., Falola, O.D. and Ayoola, M.A. (2012), "Effect of pH on geotechnical properties of laterite soil used in highway pavement construction", Civil Environ. Res., 2(10), 23-28.
  37. Oztoprak, S., Sargin, S., Uyar, H.K. and Bozbey, I. (2018), "Modeling of pressuremeter tests to characterize the sands", Geomech. Eng., 14(6), 509-517. https://doi.org/10.12989/gae.2018.14.6.509.
  38. Raheem, A.M. and Abdulkarem, M.A. (2016), "Experimental testing and analytical modeling of strip footing in reinforced sandy soil with multi-geogrid layers under different loading conditions", Am. J. Civ. Eng., 4(1), 1-11. https://doi.org/10.11648/j.ajce.20160401.11.
  39. Rupali, S. and Sawant, V.A. (2019), "1 D contaminant transport through unsaturated stratified media using EFGM", Adv. Environ. Res., 8(1), 1-21. https://doi.org/10.12989/aer.2019.8.1.001.
  40. Sajjadi, S., Mirzaei, M., Nasab, A.F., Ghezelje, A., Tadayonfar, G. and Sarkardeh, H. (2016), "Effect of soil physical properties on infiltration rate", Geomech. Eng., 10(6), 727-736. https://doi.org/10.12989/gae.2016.10.6.727.
  41. Santamarina, J.C., Klein, K.A., Wang, Y.H. and Prencke, E. (2002), "Specific surface: determination and relevance", Can Geotech. J., 39(1), 233-241. https://doi.org/10.1139/t01-077.
  42. Sivapullaiah, P.V., Guru Prasad, B. and Allam, M.M. (2009), "Modeling sulfuric acid induced swell in carbonate clays using artificial neural networks", Geomech. Eng., 1(4), 307-321. http://dx.doi.org/10.12989/gae.2009.1.4.307.
  43. Sriraam, A.S., Raghunandan, M.S., Ti, T.B. and Kodikara, J. (2019), "Effect of palm oil on the basic geotechnical properties of kaolin", Geomech. Eng., 18(2), 179-188. https://doi.org/10.12989/gae.2019.18.2.179.
  44. Sunil, B.M., Nayak, S. and Shrihari, S. (2006), "Effect of pH on the geotechnical properties of laterite", Eng. Geol., 85(1-2), 197-203. https://doi.org/10.1016/j.enggeo.2005.09.039.
  45. Raheem, A.M. and Vipulanandan, C. (2020), "Characterizing distinctive drilling mud properties using new proposed hyperbolic fluid loss model for high pressure and high temperature conditions", J. King Saud Univ. Eng. Sci., https://doi.org/10.1016/j.jksues.2020.10.002.
  46. Raheem, A.M. and Vipulanandan, C. (2021), "Characterization of lime and polymer treated ultra-soft clay soils using the modified vane shear and correlating the shear strengths to the electrical resistivity and CIGMAT miniature penetrometer for nondestructive field tests", Geotech. Geol. Eng., 39, 3047-3063. https://doi.org/10.1007/s10706-021-01677-3.
  47. Wang, Y.H. and Siu, W.K. (2006), "Structure characteristics and mechanical properties of kaolinite soil I. Surface charges and structural characterizations", Can. Geotech. J., 43(6), 587-600. https://doi.org/10.1139/t06-026.
  48. Wang, H., Qian, H., Gao, Y. and Li, Y. (2018), "Classification and physical characteristics of bound water in loess and its main clay minerals", Eng. Geol., 105394. https://doi.org/10.1016/j.enggeo.2019.105394.
  49. Wang, H., Qian, H. and Gao, Y. (2020), "Non-darcian flow in loess at low hydraulic gradient", Eng. Geol., 267, 105483. https://doi.org/10.1016/j.enggeo.2020.105483.
  50. Wang, H., Qian, H. and Gao, Y. (2021), "Characterization of macropore structure of remolded loess and analysis of hydraulic conductivity anisotropy using X-ray computed tomography technology", Environ. Earth Sci., 80, 197. https://doi.org/10.1007/s12665-021-09405-z.
  51. Watmough, S.A., Hutchinson, T.C. and Sager, E.P.S. (1999), "The impact of simulated acid rain on soil leachate and xylem chemistry in a Jack pine (Pinus banksiana Lamb.) Stand in northern Ontario, Canada", Water Air Soil Pollut., 111, 89-108. https://doi.org/10.1023/A:1005007518586.
  52. Xu, P., Zhang, Q., Qian, H., Yang, F. and Zheng, L. (2021) (a), "Investigating the mechanism of pH effect on saturated permeability of remolded loess", Eng. Geol., 284, 105978. https:// doi.org/10.1016/j.enggeo.2020.105978.
  53. Xu, P., Zhang, Q., Qian, H., Guo, M. and Yang, F. (2021) (b), "Exploring the geochemical mechanism for the saturated permeability change of remolded loess", Eng. Geol., 284, 105927. https://doi.org/10.1016/j.enggeo.2020.105927.
  54. Yuan, F., Chen, M. and Huang, H. (2019), "Square CFST columns under cyclic load and acid rain attack: Experiments", Steel Compos. Struct., 30(2), 171-183. https://doi.org/10.12989/scs.2019.30.2.171.