Acknowledgement
The research described in this paper was financially supported by the National Key R & D Program of China (No. 2018YFC0808706) and the Project on Social Development of Shaanxi Provincial Science (No. 2018SF382).
References
- Adam, D., Adam, C. and Falkner F.J. (2011), "Vibration emission induced by Rapid Impact Compaction", Proceedings of the 8th international conference on structural dynamics, 914-921, Leuven, Belgium, August.
- Allouzi, R., Bodour, W.A.L. Alkloub, A. and Tarawneh, B. (2019), "Finite-element model to simulate ground-improvement technique of rapid impact compaction", Proceedings of the institution of civil engineers-ground improvement, 172(1), 44-52. https://doi.org/10.1680/jgrim.18.00057.
- Anderegg, R. and Kaufmann, K. (2004), "Intelligent compaction with vibratory rollers-Feedback control systems in automatic compaction and compaction control", Transport. Res. Rec., 1868, 124-134. https://doi.org/10.3141/1868-13.
- Arias-Lara, D. and De-la-Colina, J. (2018), "Assessment of methodologies to estimate displacements from measured acceleration records", Measurement, 114(2018), 261-273. https://doi.org/10.1016/j.measurement.2017.09.019.
- Bai, T., Yang, H., Chen, X.B., Zhang, S.C. and Jin, Y.S. (2020), "In-situ monitoring and reliability analysis of an embankment slope with soil variability", Geomech. Eng., 23(3), 261-273. https://doi.org/10.12989/gae.2020.23.3.261.
- Barman, M., Nazari, M., Imran, S.A., Commuri, S. and Zaman, M. (2016), "Quality Improvement of Subgrade Through Intelligent Compaction", Transport. Res. Rec., 2579(1), 59-69. https://doi.org/10.3141/2579-07.
- Butterfield, R. (2001), "Dimensional analysis for geotechnical engineers", Geotechnique, 49(3), 357-366. https://doi.org/10.1680/geot.51.1.91.39352.
- Buzzi, O. (2010), "On the use of dimensional analysis to predict swelling strain", Eng. Geol., 116(1-2), 149-156. https://doi.org/10.1016/j.enggeo.2010.08.005.
- Buzzi, O., Giacomini, A. and Fityus, S. (2011), "Towards a dimensionless description of soil swelling behaviour", Geotechnique, 61(3), 271-277. https://doi.org/10.1680/geot.7.00194.
- Cai, H.B., Kuczek, T., Dunston, P.S. and Li, S. (2017), "Correlating intelligent compaction data to in situ soil compaction quality measurements", J. Constr. Eng. M., 143(8), 04017038. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001333.
- Cai, J., Wang, Y.Y. and Luo, M.D. (2013), "Model tests on the layout of punning position in dynamic compaction for loess", Appl. Mech. Mater., 2685(813), 304-309. https://doi.org/10.4028/www.scientific.net/AMM.405-408.304.
- Carter, J.P., Sabetamal, H., Nazem, M. and Sloan S.W. (2015), "One-dimensional test problems for dynamic consolidation", Acta Geotech., 10(1), 173-178. https://doi.org/10.1007/s11440-014-0336-x.
- Dimitrakopoulos, E., Makris, N. and Kappos, A.J. (2009b), "Dimensional analysis of the earthquake-induced pounding between adjacent struc-tures", Earthq. Eng. Struct. D., 38(7), 867-886. https://doi.org/10.1002/eqe.872.
- Dimitrakopoulos, E., Makris, N. and Kappos, A.J. (2010), "Dimensional analysis of the earthquake response of a pounding oscillator", J. Eng. Mech., 136(3), 299-310. https://doi.org/10.1061/(ASCE)0733-9399(2010)136:3(299).
- Dobrzycki, P., Kongar-Syuryun, C. and Khairutdinov, A. (2019), "Vibration reduction techniques for Rapid Impulse Compaction (RIC)", J. Phys.: Conference Series, 1425(1), 012202. http://doi.org/10.1088/1742-6596/1425/1/012202.
- Erem yants, V.I. and Uraimov, M. (2009), "Dynamics of hydraulic vibration machine for soil compaction", J. Mach. Manuf. Reliab., 38(5), 425-430. https://doi.org/10.3103/S1052618809050033.
- Feng, S.J., Hu, B., Zhang, X. and Shui, W.H. (2012), "Model test study on impact parameters' influence on tamping effect", J. Tongji U. (Natural S.), 40(8), 1147-1153. https://doi.org/10.3969/j.issn.0253-374x.2012.08.005.
- Ghanbari, E. and Hamidi, A. (2014), "Numerical modeling of rapid impact compaction in loose sands", Geomech. Eng., 6(5), 487-502. https://doi.org/10.12989/gae.2014.6.5.487.
- Gruzin, A.V., Gruzin, V.V. and Shalay, V.V. (2018), "Model dynamics of a rammer's operating element in a soil foundation of a tank for liquid hydrocarbons storage", AIP. Conf. Proc., 2007(1), 030009. https://doi.org/10.1063/1.5051870.
- He, C.M. (2006), "Experiment and Research on strengthening high embankment by dynamic compaction method", M.D. Dissertation, Central South University, Changsha.
- Herrera, C., Costa P.A. and Caicedo, B. (2018), "Numerical modelling and inverse analysis of continuous compaction control", Transp. Geotech., 17, 165-177. https://doi.org/10.1016/j.trgeo.2018.09.012.
- Hu, C.M., Wang, Y.Y., Mei, Y., Yuan, Y.L. and Zhang, S.S. (2018), "Compaction techniques and construction parameters of loess as filling material", Geomech. Eng., 15(6), 1143-1151. https://doi.org/18.15.6.1143. https://doi.org/10.12989/GAE.2018.15.6.1143
- Hu, N.C. (2007), "Study on design parameters of foundation reinforcement by dynamic compaction method", M.D. Dissertation, Shandong University, Jinan.
- Hua, T.B., Yang, X.G., Yao, Q. and Li, H.T. (2018), "Assessment of real-time compaction quality test indexes for rockfill Material based on roller vibratory acceleration analysis", Adv. Mater. Sci. Eng., 2018, 1-15. https://doi.org/10.1155/2018/2879321.
- Huang, S.G., Wang, L.J. and Wang, K. (2014), "Application and Numerical Simulation of dynamic compaction on collapsible loess subgrade", Proceeding of the 3rd International Conference on Railway Engineering, Beijing, China, July.
- JTG E40-2007 (2007), Test Methods of Soils for Highway Engineering[S]. Beijing: People's Communications Press.
- JTG/T 3610-2019 (2019), Technical Specifications for Construction of Highway Subgrades, Ministry of transport of the people's Republic of China; Beijing, China.
- Kodikara, J., Islam, T. and Sounthararajah, A. (2018), "Review of soil compaction: History and recent developments", Transp. Geotech., 17, 24-34. https://doi.org/10.1016/j.trgeo.2018.09.006.
- Li, C. (2018), "Study on Effective Reinforcement Depth of Dynamic Compaction of Backfilled Sand Foundation", M.D. Dissertation, China University of Geosciences, Beijing.
- Ling, J.M., Lin, S., Qian, J.S., Zhang, J.K., Han, B.Y. and Liu, M. (2018), "Continuous compaction control technology for granite residual subgrade compaction", J. Mater. Civil Eng., 30(12), 255-261. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002522.
- Ma, Z.Y., Dang, F.N. and Liao, H.J. (2014), "Numerical study of the dynamic compaction of gravel soil ground using the discrete element method", Granular Matter., 16(6), 881-889. https://doi.org/10.1007/s10035-014-0529-x.
- Mayne, P.W., Jones, J.S. and Dumas, J.C. (1984), "Ground response to dynamic compaction", J. Geotech. Eng. ASCE, 110(6), 757-774. https://doi.org/ 10.1061/(ASCE)0733-9410(1984)110:6(757).
- Meehan, C.L., Cacciola, D.V., Tehrani, F.S. and Baker, W.J. (2017), "Assessing soil compaction using continuous compaction control and location-specific in situ tests", Automat. Constr., 73, 31-44. https://doi.org/10.1016/j.autcon.2016.08.017.
- Meehan, C.L., Tehrani, F.S. and Vahedifard, F. (2012), "A comparison of density-based and modulus-based in situ test measurements for compaction control", Geotech. Test. J., 35(3), 387-399. https://doi.org/10.1520/GTJ103479
- Mei, Y., Hu, C.M., Yuan, Yuan, Y.L., Wang, X.Y. and Zhao, N. (2016), "Experimental study on deformation and strength property of compacted loess", Geomech. Eng., 11(1), 161-175. https://doi.org/10.12989/gae.2016.11.1.161.
- Min, Y.Z., Tao, J. and Ren, W.Z. (2020), "A high-precision online monitoring system for surface settlement imaging of railway subgrade", Measurement, 159, 107707. https://doi.org/10.1016/j.measurement.2020.107707.
- Mollamahmutoglu M. and Avci E. (2018), "Dynamic compaction experience in alluvial soils of Carsamba (Turkey)", Maejo. Int. J. Sci. Tech., 12(03),206-220. https://doi.org/
- Nazhat, Y. and Airey, D. (2015), "The kinematics of granular soils subjected to rapid impact loading", Granul. Matter., 17(1), 1-20. https://doi.org/10.1007/s10035-014-0544-y.
- Nie, Z.H. (2011), "Comparison experimental study on subgrade compaction quality test methods", Appl. Mech. Mater., 71-78, 4679-4684. https://doi.org/10.4028/www.scientific.net/AMM.71-78.4679.
- Parvizi, M. (2009), "Soil response to surface impact loads during low energy dynamic compaction", J. Appl. S., 9(11), 2088-2096. https://doi.org/10.3923/jas.2009.2088.2096.
- Pistrol, J. and Adam, D. (2018), "Fundamentals of roller integrated compaction control for oscillatory rollers and comparison with conventional testing methods", Transp. Geotech., 17, 75-84. https://doi.org/10.1016/j.trgeo.2018.09.010.
- Rinehart, R.V., Mooney, M.A, Facas, N.F. and Musimbi, O.M. (2012), "Examination of roller-Integrated continuous compaction control on Colorado test site", Transp. Res. Rec., 2310(1), 3-9. https://doi.org/10.3141/2310-01.
- Sabbar, A.S., Chegenizadeh, A. and Nikraz, H. (2018), "Effect of slag and bentonite on shear strength parameters of sandy soil", Geomech. Eng., 15(1), 659-668. https://doi.org/10.12989/gae.2018.15.1.659.
- Senseney, C.T. and Mooney, M.A. (2010), "Characterization of two-layer soil system using a lightweight deflectometer with radial sensors", Transp. Res. Rec., 2186(1), 21-28. https://doi.org/10.3141/2186-03.
- Tehrani, F.S., Meehan, C.L. and Vahedifard, F. (2014), "Comparison of density-based and modulus-based in situ tests for earthwork quality control", Geotech. Spec. Publ., (234 GSP), 2345-2354. https://doi.org/10.1061/9780784413272.228.
- Thilakasiri, H.S., Gunaratne, M., Mullins, G., Stinnette, P. and Jory, B. (1996), "Investigation of impact stresses induced in laboratory dynamic compaction of soft soils", Int. J. Numer. Anal. Met., 20(10), 753-767. https://doi.org/10.1002/(SICI)1096-9853(199610)20:10<753:AID-NAG846>3.0.CO;2-R.
- Tian, L.S. Chen, H.K., Sun, Y.L., Zhang, Q.H. and Liao, H.R. (2018), "Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests", Geomech. Eng., 16(2), 113-124. https://doi.org/10.12989/gae.2018.16.2.113.
- Torrijo, F.J., Garzon-Roca, J., Alija, S. and Quinta-Ferreira, M. (2017), "Dynamic compaction evaluation using in situ tests in Sagunto's Harbor, Valencia (Spain)", Environ. Earth Sci., 76(19), 658. https://doi.org/10.1007/s12665-017-7033-7.
- Viyanant, C., Rathje, E.M. and Rauch, A.F. (2004), "Compaction control of crushed concrete and recycled asphalt pavement using nuclear gauge", Proceeding of Geotechnical Engineering for Transportation Projects v.1(Geo-Trans 2004), 126, 958-966, Los Angeles, CA, USA, January.
- Wang, X.B. (2011), "Experimental study on Application of on-line compactness detection technology", M.D. Dissertation, Chang'an University, Xi'an.
- Wang, Y.X. and Liao, Y. (2012), "Experiment research of the lateral properties and density variation of loess subgrade to dynamic compaction for mountainous highway", Appl. Mech. Mater., 1975(412), 1571-1574. https://doi.org/10.4028/www.scientific.net/AMM.204-208.1571.
- Wersall, C., Nordfelt, I. and Larsson, S. (2018), "Resonant roller compaction of gravel in full-scale tests", Transp. Geotech., 14, 93-97. https://doi.org/10.1016/j.trgeo.2017.11.004.
- White, D.J., Jaselskis, E.J., Schaefer, V.R. and Cackler, E.T. (2005), "Real-Time Compaction Monitoring in Cohesive Soils from Machine Response", Transp. Res. Rec., 1936, 173-180. https://doi.org/10.3141/1936-20.
- Wu, Q.Y., Wang, T., Ge, H.B. and Zhu, H.P. (2019), "Dimensional analysis of pounding response of an oscillator based on modified Kelvin pounding model", J. Aerosp. Eng., 32(4), 04019039. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001018.
- Wu, Y.K., Sang, X.S. and Niu, B. (2012), "High-speed hydraulic compactor application in the bacdkfilled of bridge platform", Appl. Mech. Mater., 212-213, 1201-1204. dimensional10.4028/www.scientific.net/AMM.212-213.1201.
- Xia, D.C. and Li, W.L. (2015), "Dynamic compaction real-time detection based on acceleration measurement", J. Vib. Shock, 34(15), 45-50. https://doi.org/10.13465/j.cnki.jvs.2015.15.009.
- Xing, H.F., Liu, L.L. and Luo, Y. (2019), "Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability", Geomech. Eng., 18(4), 353-362.https://doi.org/10.12989/gae.2019.18.4.353.
- Xing, X.M., Chen, L.F., Yuan, Z.H. and Shi, Z.N. (2019), "An improved time-series model considering rheological Parameters for surface deformation monitoring of soft clay subgrade", Sensors, 19(14), 3073. https://doi.org/10.3390/s19143073.
- Xu, J.B., Li, H., Du, K., Yan, C.G, Zhao, X., Li, W., and Xu, X.Z. (2018), "Field investigation of force and displacement within a strata slope using a real-time remote monitoring system", Environ. Earth. Sci., 77(15). https://doi.org/10.1007/s12665-018-7729-3.
- Xu, M., Song, E.X. and Cao, G.X. (2009), "Compressibility of broken rock-fine grain soil mixture", Geomech. Eng., 1(2), 169-178. https://doi.org/10.12989/gae.2009.1.2.169.
- Xu, T.Y., Zhou, Z.J., Yan, R.P., Zhang, Z.P., Zhu, L.X., Chen, C.R., Xu, F. and Liu, T. (2020), "Real-time monitoring method for layered compaction quality of loess subgrade based on hydraulic compactor reinforcement", Sensors, 20(15), 4288. https://doi.org/10.3390/s20154288.
- Xu, W.J., Li, C.Q. and Zhang, H.Y. (2015), "DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test", Geomech. Eng., 9(6), 815-827. https://doi.org/10.12989/gae.2015.9.6.815.
- Yan, B., Lin, P.Y. and Yu, H.T. (2011), "Analysus of settlement and tamping energy dissipation", Chinese J. Geotechnic, 33(S1), 249-252.
- Yang, J.G., Peng, W.X. and Liu, D.Y. (2004), "Research of choosing tamping factors for dynamic consolidation method", Rock Soil Mech., 2004(8), 1335-1339. https://doi.org/10.16285/j.rsm.2004.08.035.
- Yao, Y.P. and Zhang, B.Z. (2016), "Reinforcement range of dynamic compaction based on volumetric strain", Rock Soil Mech., 37(9), 2663-2671. https://doi.org/10.16285/j.rsm.2016.09.031
- Zhang, D.Z. and Xiong, Z.Q. (2008), "Calculation of dispersion curve by combined cross-spectrum and phase shift method and its application to evaluate compactness of subgrade", Proceeding of the 3rd International Conference on Environmental and Engineering Geophysics, Wuhan, China, June.
- Zhang, G.X., Yuan, Z.X., Wang, N., Zhang, Z.Z. and Gao, P. (2013), "Dynamic Response Analysis of Compaction Loess Subgrade", Adv. Mat. Res., 671-674, 202-208. https://doi.org/10.4028/www.scientific.net/AMR.671-674.202.
- Zhang, Y., Liu, J.K., Fang, J.H. and Xu A.H. (2013), "Application of dynamic compaction and rolling compaction in the subgrade improvement of Qarhan-Golmud Highway", Sci. Cold Arid Reg., 5(5), 603-607. https://doi.org/10.3724/SP.J.1226.2013.00603.
- Zhang, Z.P., Zhou, Z.J., Guo, T., Xu, T.Y., Zhu, L.X., Xu, F., Chen, C.R., and Liu, T. (2021), "A measuring method for layered compactness of loess subgrade based on hydraulic compaction", Meas. Sci. Technol., 32(5), 055106. https://doi.org/10.1088/1361-6501/abd7ab.
- Zhou, S.Y., Kang, Y.L., Xie, H.M., Wang, L.H. and Zhang, Q. (2019), "An approach integrating dimensional analysis and field data for predicting the load on tunneling machine", KSCE J. Civ. Eng., 23(7), 3180-3187. https://doi.org/10.1007/s12205-019-0266-0.