DOI QR코드

DOI QR Code

Vector-Based Data Augmentation and Network Learning for Efficient Crack Data Collection

효율적인 균열 데이터 수집을 위한 벡터 기반 데이터 증강과 네트워크 학습

  • Received : 2022.03.03
  • Accepted : 2022.05.23
  • Published : 2022.06.01

Abstract

In this paper, we propose a vector-based augmentation technique that can generate data required for crack detection and a ConvNet(Convolutional Neural Network) technique that can learn it. Detecting cracks quickly and accurately is an important technology to prevent building collapse and fall accidents in advance. In order to solve this problem with artificial intelligence, it is essential to obtain a large amount of data, but it is difficult to obtain a large amount of crack data because the situation for obtaining an actual crack image is mostly dangerous. This problem of database construction can be alleviated with elastic distortion, which increases the amount of data by applying deformation to a specific artificial part. In this paper, the improved crack pattern results are modeled using ConvNet. Rather than elastic distortion, our method can obtain results similar to the actual crack pattern. By designing the crack data augmentation based on a vector, rather than the pixel unit used in general data augmentation, excellent results can be obtained in terms of the amount of crack change. As a result, in this paper, even though a small number of crack data were used as input, a crack database can be efficiently constructed by generating various crack directions and patterns.

본 논문에서는 균열을 감지 할 때 필요한 데이터를 생성할 수 있는 벡터 기반 증강 기법과 이를 학습할 수 있는 합성곱 인공신경망(Convolution Neural Networks, ConvNet) 기법을 제안한다. 균열을 빠르고 정확하게 감지하는 것은 건물 붕괴와 낙하 사고를 사전에 방지할 수 있는 중요한 기술이다. 이 문제를 인공지능으로 해결하기 위해서는 대량의 데이터 확보가 필수적이지만, 실제 균열 이미지를 얻기 위한 상황은 대부분 위험하기 때문에 대량의 균열 데이터를 확보하기는 어렵다. 이런 데이터베이스 구축의 문제점은 인위적인 특정 부분에 변형을 주어 데이터의 양을 늘리는 탄성왜곡(Elastic distortion)으로 완화시킬 수 있지만, 본 논문에서는 이보다 향상된 균열 패턴 결과를 ConvNet을 활용하여 모델링한다. 탄성왜곡보다 우리의 방법이 실제 균열 패턴과 유사하게 추출된 결과를 얻을 수 있었고, 일반적인 데이터 증강에서 사용되는 픽셀 단위가 아닌, 벡터 기반으로 균열 데이터 증강을 설계함으로써 균열의 변화량 측면에서 우수한 결과를 얻을 수 있다. 결과적으로 본 논문에서는 적은 개수의 균열 데이터를 입력으로 사용했음에도 불구하고 균열의 방향 및 패턴을 다양하게 생성하여 효율적으로 균열 데이터베이스를 구축할 수 있다.

Keywords

References

  1. D. G. Aggelis, N. Alver, and H. K. Chai, "Health monitoring of civil infrastructure and materials," 2014.
  2. I.-H. Kim, H. Jeon, S.-C. Baek, W.-H. Hong, and H.-J. Jung, "Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle," Sensors, vol. 18, no. 6, p. 1881, 2018. https://doi.org/10.3390/s18061881
  3. T. Liu, H. Huang, and Y. Yang, "Crack detection of reinforced concrete member using rayleigh-based distributed optic fiber strain sensing system," Advances in Civil Engineering, vol. 2020, 2020.
  4. T. Yamaguchi, S. Nakamura, R. Saegusa, and S. Hashimoto, "Image-based crack detection for real concrete surfaces," IEEJ Transactions on Electrical and Electronic Engineering, vol. 3, no. 1, pp. 128-135, 2008. https://doi.org/10.1002/tee.20244
  5. Y.-C. Tsai, V. Kaul, and R. M. Mersereau, "Critical assessment of pavement distress segmentation methods," Journal of transportation engineering, vol. 136, no. 1, pp. 11-19, 2010. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000051
  6. D. Zhang, Q. Li, Y. Chen, M. Cao, L. He, and B. Zhang, "An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection," Image and Vision Computing, vol. 57, pp. 130-146, 2017. https://doi.org/10.1016/j.imavis.2016.11.018
  7. A. Ayenu-Prah and N. Attoh-Okine, "Evaluating pavement cracks with bidimensional empirical mode decomposition," EURASIP Journal on Advances in Signal Processing, vol. 2008, pp. 1-7, 2008.
  8. P. Subirats, J. Dumoulin, V. Legeay, and D. Barba, "Automation of pavement surface crack detection using the continuous wavelet transform," in 2006 International Conference on Image Processing. IEEE, 2006, pp. 3037-3040.
  9. L. Ying and E. Salari, "Beamlet transform-based technique for pavement crack detection and classification," Computer-Aided Civil and Infrastructure Engineering, vol. 25, no. 8, pp. 572-580, 2010. https://doi.org/10.1111/j.1467-8667.2010.00674.x
  10. A. Hizukuri and T. Nagata, "Development of a classification method for a crack on a pavement surface images using machine learning," in Thirteenth International Conference on Quality Control by Artificial Vision 2017, vol. 10338. International Society for Optics and Photonics, 2017, p. 103380M.
  11. P. P. Acharjya, R. Das, and D. Ghoshal, "Study and comparison of different edge detectors for image segmentation," Global Journal of Computer Science and Technology, 2012.
  12. L. Zhang, F. Yang, Y. D. Zhang, and Y. J. Zhu, "Road crack detection using deep convolutional neural network," in 2016 IEEE international conference on image processing (ICIP). IEEE, 2016, pp. 3708-3712.
  13. L. Pauly, D. Hogg, R. Fuentes, and H. Peel, "Deeper networks for pavement crack detection," in Proceedings of the 34th ISARC. IAARC, 2017, pp. 479-485.
  14. H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, "Road damage detection using deep neural networks with images captured through a smartphone," arXiv preprint arXiv:1801.09454, 2018.
  15. H. Xu, X. Su, Y. Wang, H. Cai, K. Cui, and X. Chen, "Automatic bridge crack detection using a convolutional neural network," Applied Sciences, vol. 9, no. 14, p. 2867, 2019. https://doi.org/10.3390/app9142867
  16. H. Oliveira and P. L. Correia, "Automatic road crack detection and characterization," IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp. 155-168, 2012. https://doi.org/10.1109/TITS.2012.2208630
  17. H. Oliveira and P. L. Correia, "Crackit-an image processing toolbox for crack detection and characterization," in 2014 IEEE international conference on image processing (ICIP). IEEE, 2014, pp. 798-802.
  18. H. Oliveira and P. L. Correia, "Supervised strategies for cracks detection in images of road pavement flexible surfaces," in 2008 16th European Signal Processing Conference. IEEE, 2008, pp. 1-5.
  19. Y. Huang and B. Xu, "Automatic inspection of pavement cracking distress," Journal of Electronic Imaging, vol. 15, no. 1, p. 013017, 2006. https://doi.org/10.1117/1.2177650
  20. S. Iyer and S. K. Sinha, "A robust approach for automatic detection and segmentation of cracks in underground pipeline images," Image and Vision Computing, vol. 23, no. 10, pp. 921-933, 2005. https://doi.org/10.1016/j.imavis.2005.05.017
  21. S. K. Sinha and P. W. Fieguth, "Automated detection of cracks in buried concrete pipe images," Automation in construction, vol. 15, no. 1, pp. 58-72, 2006. https://doi.org/10.1016/j.autcon.2005.02.006
  22. S. K. Sinha and P. W. Fieguth, "Segmentation of buried concrete pipe images," Automation in Construction, vol. 15, no. 1, pp. 47-57, 2006. https://doi.org/10.1016/j.autcon.2005.02.007
  23. K.-B. Kim and J.-H. Cho, "Detection of concrete surface cracks using fuzzy techniques," Journal of the Korea Institute of Information and Communication Engineering, vol. 14, no. 6, pp. 1353-1358, 2010. https://doi.org/10.6109/JKIICE.2010.14.6.1353
  24. G. K. Choudhary and S. Dey, "Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks," in 2012 IEEE fifth international conference on advanced computational intelligence (ICACI). IEEE, 2012, pp. 404-411.
  25. T. Yamaguchi and S. Hashimoto, "Practical image measurement of crack width for real concrete structure," Electronics and Communications in Japan, vol. 92, no. 10, pp. 1-12, 2009. https://doi.org/10.1002/ecj.10151
  26. M. Gavilan, D. Balcones, O. Marcos, D. F. Llorca, M. A. ' Sotelo, I. Parra, M. Ocana, P. Aliseda, P. Yarza, and A. Am'irola, "Adaptive road crack detection system by pavement classification," Sensors, vol. 11, no. 10, pp. 9628-9657, 2011. https://doi.org/10.3390/s111009628
  27. Y. Sari, P. B. Prakoso, and A. R. Baskara, "Road crack detection using support vector machine (svm) and otsu algorithm," in 2019 6th International Conference on Electric Vehicular Technology (ICEVT). IEEE, 2019, pp. 349-354.
  28. B. Cornelis, Y. Yang, J. T. Vogelstein, A. Dooms, I. Daubechies, and D. Dunson, "Bayesian crack detection in ultra high resolution multimodal images of paintings," in 2013 18th International Conference on Digital Signal Processing (DSP). IEEE, 2013, pp. 1-8.
  29. E. Feulvarch, M. Fontaine, and J.-M. Bergheau, "Xfem investigation of a crack path in residual stresses resulting from quenching," Finite Elements in Analysis and Design, vol. 75, pp. 62-70, 2013. https://doi.org/10.1016/j.finel.2013.07.005
  30. P. Sheng, L. Chen, and J. Tian, "Learning-based road crack detection using gradient boost decision tree," in 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2018, pp. 1228-1232.
  31. Y. Xu, S. Li, D. Zhang, Y. Jin, F. Zhang, N. Li, and H. Li, "Identification framework for cracks on a steel structure surface by a restricted boltzmann machines algorithm based on consumer-grade camera images," Structural Control and Health Monitoring, vol. 25, no. 2, p. e2075, 2018. https://doi.org/10.1002/stc.2075
  32. K. Chen, A. Yadav, A. Khan, Y. Meng, and K. Zhu, "Improved crack detection and recognition based on convolutional neural network," Modelling and simulation in engineering, vol. 2019, 2019.
  33. S. Li and X. Zhao, "Image-based concrete crack detection using convolutional neural network and exhaustive search technique," Advances in Civil Engineering, vol. 2019, 2019.
  34. S. Dorafshan, R. J. Thomas, and M. Maguire, "Sdnet2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks," Data in brief, vol. 21, pp. 1664-1668, 2018. https://doi.org/10.1016/j.dib.2018.11.015
  35. L. Perez and J. Wang, "The effectiveness of data augmentation in image classification using deep learning," arXiv preprint arXiv:1712.04621, 2017.
  36. C. S. Kenney, M. Zuliani, and B. Manjunath, "An axiomatic approach to corner detection," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1. IEEE, 2005, pp. 191-197.