DOI QR코드

DOI QR Code

Fabrication and Electrochemical Characterization of N/S co-doped Carbon Felts for Electric Double-Layer Capacitors

전기이중층 커패시터용 질소/황이 동시에 도핑된 탄소 펠트의 제조 및 전기화학적 성능 평가

  • Lee, Byoung-Min (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Yun, Je Moon (Division of Advanced Materials Engineering, Dong-Eui University) ;
  • Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University)
  • 이병민 (충남대학교 고분자공학과) ;
  • 윤제문 (동의대학교 신소재공학부) ;
  • 최재학 (충남대학교 고분자공학과)
  • Received : 2022.04.14
  • Accepted : 2022.05.16
  • Published : 2022.05.27

Abstract

In this study, N/S co-doped carbon felt (N/S-CF) was prepared and characterized as an electrode material for electric double-layer capacitors (EDLCs). A commercial carbon felt (CF) was immersed in an aqueous solution of thiourea and then thermally treated at 800 ℃ under an inert atmosphere. The prepared N/S-CF showed a large specific surface area with hierarchical pore structures. The electrochemical performance of the N/S-CF-based electrode was evaluated using both 3-electrode and 2-electrode systems. In the 3-electrode system, the N/S-CF-based electrode showed a good specific capacitance of 177 F/g at 1 A/g and a good rate capability of 41% at 20 A/g. In the 2-electrode system (symmetric capacitor), the freestanding N/S-CF-based electrode showed a specific capacitance of 275 mF/cm2 at 2 mA/cm2, a rate capability of 62.5 % at 100 mA/cm2, a specific power density of ~ 25,000 mW/cm2 at an energy density of 23.9 mWh/cm2, and a cycling stability of ~ 100 % at 100 mA/cm2 after 20,000 cycles. These results indicate the N/S co-doped carbon felts can be a promising candidate as a new electrode material in a symmetric capacitor.

Keywords

Acknowledgement

This work was supported by the research fund of Chungnam National University.

References

  1. H. S. Chang, A. R. Hwang, B. M. Lee, J. M. Yun and J. H. Choi, Korean J. Mater. Res., 31, 502 (2021). https://doi.org/10.3740/MRSK.2021.31.9.502
  2. A. Muzaffara, M. B. Ahamed, K. Deshmukh and J. Thirumalai, Renew. Sust. Energ. Rev., 101, 123 (2019). https://doi.org/10.1016/j.rser.2018.10.026
  3. B. M. Lee, B. S. Choi, J. Y. Lee, S. K. Hong, J. S. Lee and J. H. Choi, Carbon Lett., 31, 67 (2021). https://doi.org/10.1007/s42823-020-00150-0
  4. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, 2520 (2009). https://doi.org/10.1039/b813846j
  5. A. M. Abioye and F. N. Ani, Renew. Sust. Energ. Rev., 52, 1282 (2015). https://doi.org/10.1016/j.rser.2015.07.129
  6. M. Kim, I. Oh and J. Kim, Phys. Chem. Chem. Phys., 17, 4424 (2015). https://doi.org/10.1039/c4cp05357e
  7. S. Song, F. Ma, G. Wu, D. Ma, W. Geng and J. Wan, J. Mater. Chem. A, 2, 18154 (2015).
  8. Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing and Z. Fan, Carbon, 67, 119 (2014). https://doi.org/10.1016/j.carbon.2013.09.070
  9. S. Saha, P. Samanta, N. C. Murmu and T. K uila, J. Energy Storage, 17, 181 (2018). https://doi.org/10.1016/j.est.2018.03.006
  10. Y. Deng, Y. Xie, K. Zou and X. Ji, J. Mater. Chem. A, 4, 1144 (2016). https://doi.org/10.1039/C5TA08620E
  11. A. B. Fuertes, G. A. Ferrero and M. Sevilla, J. Mater. Chem. A, 2, 14439 (2014). https://doi.org/10.1039/c4ta02959c
  12. L. Hu, J. Hou, Y. Ma, H. Li and T. Zhai, J. Mater. Chem. A, 4, 15006 (2016). https://doi.org/10.1039/C6TA06337C
  13. K. Zou, Y. Deng, J. Chen, Y. Qian, Y. Yang, Y. Li and G. Chen, J. Power Sources, 378, 579 (2013). https://doi.org/10.1016/j.jpowsour.2017.12.081
  14. J. Dai, L. Wang, A. Xie, J. He and Y. Yan, ACS Sustainable Chem. Eng., 8, 739 (2020). https://doi.org/10.1021/acssuschemeng.9b01394
  15. C. Yuan, X. Liu, M. Jia, Z. Luo and J. Yao, J. Mater. Chem. A, 3, 3409 (2015). https://doi.org/10.1039/C4TA06411A
  16. D. Li, C. Yu, M. Wang, Y. Zhang and C. Pan, RSC Adv., 4, 55394 (2014). https://doi.org/10.1039/C4RA10761F
  17. M. P. Bondarde, P. H. Wadekar and S. Some, J. Energy Storage, 32, 101783 (2020). https://doi.org/10.1016/j.est.2020.101783
  18. Y. Q. Shan, Z. X. Xu, P. G. Duan, H. L. Fan, X. Hu and R. Luque, ACS Sustainable Chem. Eng., 8, 15809 (2020). https://doi.org/10.1021/acssuschemeng.0c05520
  19. Z. Khanam, J. Liu and S. Song, Electrochim. Acta, 363, 137208 (2020). https://doi.org/10.1016/j.electacta.2020.137208
  20. D. Sun, X. Yan, J. Lang and Q. Xue, J. Power Sources, 222, 52 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.059
  21. L. Tong, M. Gao, C. Jiang and K. Cai, J. Mater. Chem. A, 7, 10751 (2019). https://doi.org/10.1039/c9ta01856e
  22. S. Zhu, J. Ni and Y. Li, Nano Res., 13, 1825 (2020). https://doi.org/10.1007/s12274-020-2729-5
  23. T. X. H. Le, M. Bechelany and M. Cretin, Carbon, 122, 564 (2017). https://doi.org/10.1016/j.carbon.2017.06.078
  24. B. Y. Sheng, X. Tang, E. Peng and J. Xue, J. Mater. Chem. B, 1, 512 (2013). https://doi.org/10.1039/C2TB00123C
  25. V. P. Timchenko, A. L. Novozhilov and O. A. Slepysheva, Russ. J. Gen. Chem., 74, 1046 (2004). https://doi.org/10.1023/B:RUGC.0000045862.69442.aa
  26. Y. Liu, L. Zhou, Y. Li, R. Deng and H. Zhang, Nanoscale, 9, 491 (2017). https://doi.org/10.1039/c6nr07123f
  27. D. He, Y. Jiang, H. Lv, M. Pan and S. Mu, Appl. Catal., B, 132-133, 379 (2013). https://doi.org/10.1016/j.apcatb.2012.12.005
  28. B. M. Lee, N. Umirov, J. Y. Lee, J. Y. Lee, B. S. Choi, S. K. Hong, S. S. Kim and J. H. Choi, Int. J. Energy Res., 45, 9530 (2021). https://doi.org/10.1002/er.6479
  29. J. Ruan, T. Yuan, Y. Pang, S. Luo, C. Peng, J. Yang and S. Zheng, Carbon, 126, 6 (2018).
  30. L. Z. Fan, T. T. Chen, W. L. Song, X. Li and S. Zhang, Sci. Rep., 5, 15388 (2015). https://doi.org/10.1038/srep15388
  31. B. M. Lee, H. S. Chang, J. H. Choi and S. K. Hong, Korean J. Mater. Res., 31, 264 (2021). https://doi.org/10.3740/MRSK.2021.31.5.264
  32. S. Huo, M. Liu, L. Wu, M. Liu, M. Xu, W. Ni and Y. M. Yan, J. Power Sources, 387, 81 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.061
  33. D. S. K won, H. Y. Choi, B. M. Lee, Y. G. Jeong, D. Yang, S. T. Kim and J. H. Choi, Appl. Surf. Sci., 471, 328 (2019). https://doi.org/10.1016/j.apsusc.2018.11.236
  34. C. Gao, Q. Wang, S. Luo, Z. Wang, Y. Zhang, Y. Liu, A. Hao and R. Guo, J. Power Sources, 415, 165 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.073
  35. B. M. Lee, V. T. Bui, H. S. Lee, S. K. Hong, H. S. Choi and J. H. Choi, Radiat. Phys. Chem., 163, 18 (2019). https://doi.org/10.1016/j.radphyschem.2019.05.006
  36. X. Zhou, P. Wang, Y. Zhang, X. Zhang and Y. Jiang, ACS Sustainable Chem. Eng., 4, 5585 (2016). https://doi.org/10.1021/acssuschemeng.6b01408
  37. S. A. Chernyak, A. S. Ivanov, D. N. Stolbov, T. B. Egorova, K. I. Maslakov, Z. Shen, V. V. Lunin and S. V. Savilov, Appl. Surf. Sci., 488, 51 (2019). https://doi.org/10.1016/j.apsusc.2019.05.243
  38. Q. Zhang, K. Han, S. Li, M. Li, J. Li and K. Ren, Nanoscale, 5, 2427 (2018).
  39. B. Chang, W. Shi, S. Han, Y. Zhou, Y. Liu, S. Zhang and B. Yang, Chem. Eng. J., 350, 585 (2018). https://doi.org/10.1016/j.cej.2018.06.013
  40. K. C. Struckhoff, M. Thommes and L. Sarkisov, Adv. Mater. Interfaces, 7, 2000184 (2020). https://doi.org/10.1002/admi.202000184
  41. J. Du, Y. Zhang, H. Lv and A. Chen, Adv. Powder Technol., 32, 1294 (2021). https://doi.org/10.1016/j.apt.2021.02.030
  42. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 87, 1051 (2015). https://doi.org/10.1515/pac-2014-1117
  43. Y. Wang, Y. Liu, D. Wang, C. Wang, L. Guo and T. Yi, Appl. Surf. Sci., 506, 145014 (2020). https://doi.org/10.1016/j.apsusc.2019.145014