DOI QR코드

DOI QR Code

Rational Design of Binder-Free Fe-Doped CuCo(OH)2 Nanosheets for High-Performance Water Oxidation

  • Patil, Komal (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University) ;
  • Jang, Su Young (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jin Hyeok (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University)
  • Received : 2022.03.29
  • Accepted : 2022.04.13
  • Published : 2022.05.27

Abstract

Designing and producing a low-cost, high-current-density electrode with good electrocatalytic activity for the oxygen evolution reaction (OER) is still a major challenge for the industrial hydrogen energy economy. In this study, nanostructured Fe-doped CuCo(OH)2 was discovered to be a precedent electrocatalyst for OER with low overpotential, low Tafel slope, good durability, and high electrochemically active surface sites at reduced mass loadings. Fe-doped CuCo(OH)2 nanosheets are made using a hydrothermal synthesis process. These nanosheets are clumped together to form a highly open hierarchical structure. When used as an electrocatalyst, the Fe-doped CuCo(OH)2 nanosheets required an overpotential of 260 mV to reach a current density of 50 mA cm-2. Also, it showed a small Tafel slope of 72.9 mV dec-1, and superior stability while catalyzing the generation of O2 continuously for 20 hours. The Fe-doped CuCo(OH)2 was found to have a large number of active sites which provide hierarchical and stable transfer routes for both electrolyte ions and electrons, resulting in exceptional OER performance.

Keywords

Acknowledgement

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024334) and also by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2022R1A2C2007219).

References

  1. M. I. Jamesh, J. Power Sources, 333, 213 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.161
  2. M. I. Jamesh and X. Sun, J. Power Sources, 400, 31 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.125
  3. K. Patil, P. Babar, D. M. Lee, V. Karade, E. Jo, S. Korade and J. H. Kim, Sustain. Energy Fuels, 4, 5254 (2020). https://doi.org/10.1039/D0SE00899K
  4. P. Babar, K. Patil, D. M. Lee, V. Karade, K. Gour, S. Pawar and J. H. Kim, J. Colloid Interface Sci., 584, 760 (2021). https://doi.org/10.1016/j.jcis.2020.09.108
  5. K. Pat il, P. Babar, H. Bae, E. Jo, J. S. Jang, P. Bhoit e, S. Kolekar and J. H. Kim, Sustain. Energy Fuels, 6, 474 (2022). https://doi.org/10.1039/D1SE01478A
  6. P. Babar, K. Patil, J. Mahmood, S. J. Kim, J. H. Kim and C. T. Yavuz, Cell Rep. Phys. Sci., 3, 100762 (2022). https://doi.org/10.1016/j.xcrp.2022.100762
  7. Q. Wang, H. Xu, X. Qian, B. Huang, K. Wang, L. Jin, G. He and H. Chen, Inorg. Chem., 61, 3176 (2022). https://doi.org/10.1021/acs.inorgchem.1c03641
  8. M. Li, K.-H. Ye, W. Qiu, Y. Wang and H. Ren, J. Am. Chem. Soc., 144, 12, 5247 (2022). https://doi.org/10.1021/jacs.2c00506
  9. X. Xu, X. Tian, Z. Zhong, L. Kang and J. Yao, J. Power Sources, 424, 42 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.084
  10. K. Patil, P. Babar and J. H. Kim, Korean J. Mater. Res., 30, 217 (2020). https://doi.org/10.3740/MRSK.2020.30.5.217
  11. M. Zhuang, X. Ou, Y. Dou, L. Zhang, Q. Zhang, R. Wu, Y. Ding, M. Shao and Z. Luo, Nano Lett., 16, 4691 (2016). https://doi.org/10.1021/acs.nanolett.6b02203
  12. M. Chauhan, K. P. Reddy, C. S. Gopinath and S. Deka, ACS Catal., 7, 5871 (2017). https://doi.org/10.1021/acscatal.7b01831
  13. M. Salmanion and M. M. Najafpour, Inorg. Chem., 60, 6073 (2021). https://doi.org/10.1021/acs.inorgchem.1c00561
  14. J. Li, D. Chu, D. R. Baker, A. Leff, P. Zheng and R. Jiang, ACS Appl. Energy Mater., 4, 9969 (2021). https://doi.org/10.1021/acsaem.1c01926
  15. W. Zhang, G. Chen, Y. Du, S. Zhu, J. Zhang, G. Liu, F. Zhang, S. Wang and X. Wang, ACS Appl. Energy Mater., 5, 3129 (2022). https://doi.org/10.1021/acsaem.1c03748
  16. Z. Li, Y. Xin, Z. Zhang, H. Wu and P. Wang, Sci. Rep., 5, 1 (2015).
  17. A. S. Pillai, R. Rajagopalan, A. Amruthalakshmi, J. Joseph, A. Ajay, I. Shakir, S. V. Nair and A. Balakrishnan, Colloids Surf. A Physicochem. Eng. Asp., 470, 280 (2015). https://doi.org/10.1016/j.colsurfa.2015.01.068