Acknowledgement
The authors gratefully acknowledge support from the Natural Science Foundation of Hebei Province (Grant No. E2021210053) and Young Backbone Teacher Cultivation Program of the Henan University of Technology.
References
- Blevins, R.D. (2001), Flow-Induced Vibration, (2nd Edition), Van Nostrand Reinhold, New York, USA.
- Chang, C.C. and Gu, M. (1999), "Suppression of vortex-excited vibration of tall buildings using tuned liquid dampers", J. Wind Eng. Ind. Aerod., 83(1), 225-237. https://doi.org/10.1016/S0167-6105(99)00074-4.
- Cui, Z., Zhao, M., Teng, B. and Cheng, L. (2015), "Two-dimensional numerical study of vortex-induced vibration and galloping of square and rectangular cylinders in steady flow", Ocean Eng., 106, 189-206. https://doi.org/10.1016/j.oceaneng.2015.07.004.
- Dorogi, D. and Baranyi, L. (2020), "Identification of upper branch for vortex-induced vibration of a circular cylinder at Re=300", J. Fluids Struct., 98, 103135. https://doi.org/10.1016/j.jfluidstructs.2020.103135.
- Govardhan, R. and Williamson, C.H.K. (2000), "Modes of vortex formation and frequency response for a freely vibrating cylinder", J. Fluid Mech., 420, 85-130 https://doi.org/10.1017/S0022112000001233.
- Govardhan, R. and Williamson, C.H.K. (2004), "Critical mass in vortex-induced vibration of a cylinder", Europ. J. Mech. B/Fluids, 23(1), 17-27. https://doi.org/10.1016/j.euromechflu.2003.04.001.
- Hsieh, S.C., Low, Y.M. and Chiew, Y.M. (2017), "Flow characteristics around a circular cylinder undergoing vortex-induced vibration in the initial branch", Ocean Eng., 129, 265-278. https://doi.org/10.1016/j.oceaneng.2016.11.019.
- Huang, D., Wu, T. and He, S. (2020), "Experimental investigation of vortex-induced aeroelastic effects on a square cylinder in uniform flow", Wind Struct., 30(1), 37-54. https://doi.org/10.12989/was.2020.30.1.037.
- Khalak, A. and Williamson, C.H.K. (1999), "Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping", J. Fluids Struct., 13(7-8), 813-851 https://doi.org/10.1006/jfls.1999.0236.
- Konstantinidis, E., Zhao, J., Leontini, J., Lo Jacono, D. and Sheridan, J. (2020), "Phase dynamics of effective drag and lift components in vortex-induced vibration at low mass-damping", J. Fluids Struct., 96, 103028. https://doi.org/10.1016/j.jfluidstructs.2020.103028.
- Lin, S., Wang, Q., Nikitas, N. and Liao, H. (2019), "Effects of oscillation amplitude on motion-induced forces for 5:1 rectangular cylinders", J. Wind Eng. Ind. Aerod., 186, 68-93. https://doi.org/10.1016/j.jweia.2019.01.002.
- Miran, S. and Sohn, C.H. (2017), "Effect of rounded corners on two degree of freedom naturally oscillating square cylinder", Int. J. Numerical Methods Heat Fluid Flow, 27(10), 2355-2374 https://doi.org/10.1108/HFF-06-2016-0248.
- Modir, A., Kahrom, M. and Farshidianfar, A. (2016), "Mass ratio effect on vortex induced vibration of a flexibly mounted circular cylinder, an experimental study", Int. J. Marine Energy, 16, 1-11. https://doi.org/10.1016/j.ijome.2016.05.001.
- Modir, A., Mohammadkhani, A. and Ahani, H. (2021), "Experimental investigation of the flow-induced motion of a square-section cylinder", J. Hydrodynamics, 33(2), 301-310. https://doi.org/10.1007/s42241-021-0027-7.
- Nemes, A., Zhao, J., Lo Jacono, D. and Sheridan, J. (2012), "The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack", J. Fluid Mech., 710, 102-130. https://doi.org/10.1017/jfm.2012.353.
- Nikitas, N. and Macdonald, J. (2015), "Aerodynamic forcing characteristics of dry cable galloping at critical Reynolds numbers", Europ. J. Mech. - B/Fluids, 49, 243-249 https://doi.org/10.1016/j.euromechflu.2014.09.005.
- Nikitas, N., Macdonald, J., Jakobsen, J.B. and Andersen, T.L. (2012), "Critical reynolds number and galloping instabilities: Experiments on circular cylinders", Experiment. Fluids, 52(5), 1295-1306 https://doi.org/10.1007/s00348-011-1255-3.
- Oka, S. and Ishihara, T. (2009), "Numerical study of aerodynamic characteristics of a square prism in a uniform flow", J. Wind Eng. Ind. Aerod., 97(11-12), 548-559. https://doi.org/10.1016/j.jweia.2009.08.006.
- Paidoussis, M.P., Price, S.J. and Langre, E.D. (2011), Fluid-Structure Interactions Cross-Flow-Induced Instabilities, Cambridge University Press, 32 Avenue of the Americas, New York, NY 10013-2473, USA.
- Sen, S. and Mittal, S. (2015), "Effect of mass ratio on free vibrations of a square cylinder at low Reynolds numbers", J. Fluids Struct., 54, 661-678. https://doi.org/10.1016/j.jfluidstructs.2015.01.006.
- Shang, J.K., Smits, A.J. and Stone, H.A. (2013), "The appearance of P+S modes in the wake of a freely vibrating, highly flexible cylinder", J. Fluids Struct., 43(1), 481-486. https://doi.org/10.1016/j.jfluidstructs.2013.08.010.
- Sourav, K., Kumar, D. and Sen, S. (2020), "Vortex-induced vibrations of an elliptic cylinder of low mass ratio: Identification of new response branches", Phys. Fluids, 32(2), 023605 https://doi.org/10.1063/1.5141030.
- Tamura, T. and Miyagi, T. (1999), "The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes", J. Wind Eng. Ind. Aerod., 83(1-3), 135-145. https://doi.org/10.1016/S0167-6105(99)00067-7.
- Wang, L., Liu, W.B. and Dai, H.L. (2014), "Aeroelastic galloping response of square prisms: The role of time-delayed feedback", Int. J. Eng. Sci., 75, 79-84. https://doi.org/10.1016/j.ijengsci.2013.11.008.
- Williamson, C.H.K. and Roshko, A. (1988), "Vortex formation in the wake of an oscillating cylinder", J. Fluids Struct., 2(4), 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8.
- Yen, S.C. and Yang, C.W. (2011), "Flow patterns and vortex shedding behavior behind a square cylinder", J. Wind Eng. Ind. Aerod., 99(8), 868-878. https://doi.org/10.1016/j.jweia.2011.06.006.
- Zhao, H. and Zhao, M. (2019), "Effect of rounded corners on flow-induced vibration of a square cylinder at a low Reynolds number of 200", Ocean Eng., 188, 102623 https://doi.org/10.1016/j.oceaneng.2019.106263.
- Zhao, J., Leontini, J., Lo Jacono, D. and Sheridan, J. (2019a), "The effect of mass ratio on the structural response of a freely vibrating square cylinder oriented at different angles of attack", J. Fluids Struct., 86, 200-212. https://doi.org/10.1016/j.jfluidstructs.2019.02.008.
- Zhao, J., Leontini, J.S., Lo Jacono, D. and Sheridan, J. (2014), "Fluid-structure interaction of a square cylinder at different angles of attack", J. Fluid Mech., 747, 688-721. https://doi.org/10.1017/jfm.2014.167.
- Zhao, J., Sheridan, J., Hourigan, K. and Thompson, M.C. (2019b), "Flow-induced vibration of a cube orientated at different incidence angles", J. Fluids Struct., 91(3), 102701 https://doi.org/10.1016/j.jfluidstructs.2019.102701.
- Zhao, M. (2020), "Effects of natural frequency ratio on vortex-induced vibration of a circular cylinder in steady flow", Phys. Fluids, 32(7), 073604. https://doi.org/10.1063/5.0011477.