Acknowledgement
GHK thanks to Hokkaido University for supporting his stay in Muroran Marine Station as a visiting professor. This research was supported by Marine Biotechnology Program of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) (No.20170431) and by National Marine Biodiversity Institute of Korea (2021M01100).
References
- Bauman, R. W. Jr. & Jones, B. R. 1986. Electrophysiological investigations of the red alga Griffithsia pacifica Kyl. J. Phycol. 22:49-56. https://doi.org/10.1111/j.1529-8817.1986.tb02514.x
- Boraas, M. E., Seale, D. B. & Boxhorn, J. E. 1998. Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evol. Ecol. 12:153-164. https://doi.org/10.1023/A:1006527528063
- Bouck, G. B. 1962. Chromatophore development, pits and other fine structure in the red alga, Lomentaria baileyana (Harv.) Farlow. J. Cell Biol. 12:553-569. https://doi.org/10.1083/jcb.12.3.553
- Broadwater, S. T. & Scott, J. 1982. Ultrastructure of early development in the female reproductive system of Polysiphonia harveyi Bailey (Ceramiales, Rhodophyta). J. Phycol. 18:427-441. https://doi.org/10.1111/j.1529-8817.1982.tb03206.x
- Ding, B., Turgeon, R. & Parthasarathy, M. V. 1992. Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28-41. https://doi.org/10.1007/BF01343367
- Erwee, M. G. & Goodwin, P. B. 1983. Characterisation of the Egeria densa Planch. leaf symplast: inhibition of the intercellular movement of fluorescent probes by group II ions. Planta 158:320-328. https://doi.org/10.1007/BF00397334
- Farnham, G., Strittmatter, M., Coelho, S., Cock, J. M. & Brownlee, C. 2013. Gene silencing in Fucus embryos: developmental consequences of RNAi-mediated cytoskeletal disruption. J. Phycol. 49:819-829. https://doi.org/10.1111/jpy.12096
- Gawryluk, R. M. R., Tikhonenkov, D. V., Hehenbergen, E., Husnik, F., Mylnikov, A. P. & Keeling, P. J. 2019. Nonphotosynthetic predators are sister to red algae. Nature 572:240-243. https://doi.org/10.1038/s41586-019-1398-6
- Goff, L. J. & Coleman, A. W. 1987. The solution to the cytological paradox of isomorphy. J. Cell Biol. 104:739-748. https://doi.org/10.1083/jcb.104.3.739
- Goff, L. J., Moon, D. A., Nyvall, P., Stache, B., Mangin, K. & Zuccarello, G. 1996. The evolution of parasitism in the red algae: molecular comparisons of adelphoparasites and their hosts. J. Phycol. 32:297-312. https://doi.org/10.1111/j.0022-3646.1996.00297.x
- Goodwin, P. B. 1983. Molecular size limit for movement in the symplast of the Elodea leaf. Planta 157:124-130. https://doi.org/10.1007/BF00393645
- Ispolatov, I., Ackermann, M. & Doebeli, M. 2012. Division of labour and the evolution of multicellularity. Proc. R. Soc. B Biol. Sci. 279:1768-1776. https://doi.org/10.1098/rspb.2011.1999
- Justice, S. S., Hunstad, D. A., Cegelski, L. & Hultgren, S. J. 2008. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Microbiol. 6:162-168. https://doi.org/10.1038/nrmicro1820
- Kempers, R., Prior, D. A. M., van Bel, A. J. E. & Oparka, K. J. 1993. Plasmodesmata between sieve element and companion cell of extrafascicular stem phloem of Cucurbita maxima permit passage of 3 kDa fluorescent probes. Plant J. 4:567-575. https://doi.org/10.1046/j.1365-313X.1993.04030567.x
- Kim, J. -Y., Rim, Y., Wang, H. & Jackson, D. 2005. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev. 19:788-793. https://doi.org/10.1101/gad.332805
- Klochkova, T. A., Kang, S. -H., Cho, G. Y., Pueschel, C. M., West, J. A. & Kim, G. H. 2006. Biology of a terrestrial green alga Chlorococcum sp. (Chlorococcales, Chlorophyta), collected from the Miruksazi stupa in Korea. Phycologia 45:349-358. https://doi.org/10.2216/04-58.1
- Koslowsky, D. J. & Waaland, S. D. 1984. Cytoplasmic incompatibility following somatic cell fusion in Griffithsia pacifica Kylin, a red alga. Protoplasma 123:8-17. https://doi.org/10.1007/BF01283177
- Koslowsky, D. J. & Waaland, S. D. 1987. Ultrastructure of selective chloroplast destruction after somatic cell fusion in Griffithsia pacifica Kylin (Rhodophyta). J. Phycol. 23:638-648. https://doi.org/10.1111/j.1529-8817.1987.tb04218.x
- Kuzdzal-Fick, J. J., Chen, L. & Balazsi, G. 2019. Disadvantages and benefits of evolved unicellularity versus multicellularity in budding yeast. Ecol. Evol. 9:8509-8523. https://doi.org/10.1002/ece3.5322
- Lee, J. -Y. 2014. New and old roles of plasmodesmata in immunity and parallels to tunneling nanotubes. Plant Sci. 221-222:13-20. https://doi.org/10.1016/j.plantsci.2014.01.006
- Liarzi, O. & Epel, B. L. 2005. Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic, and abiotic signals. 225:67-76. https://doi.org/10.1007/s00709-004-0079-x
- Lucas, W. J., Bouche-Pillon, S., Jackson, D. P., Nguyen, L., Baker, L., Ding, B. & Hake, S. 1995. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980-1983. https://doi.org/10.1126/science.270.5244.1980
- Lyons, N. A. & Kolter, R. 2015. On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 24:21-28. https://doi.org/10.1016/j.mib.2014.12.007
- McLean, B. G., Hempel, F. D. & Zambryski, P. C. 1997. Plant intercellular communication via plasmodesmata. Plant Cell 9:1043-1054. https://doi.org/10.1105/tpc.9.7.1043
- Miller, S. M. 2010. Volvox, Chlamydomonas, and the evolution of multicellularity. Nat. Edu. 3:65.
- Nagasato, C., Tanaka, A., Ito, T., Katsaros, C. & Motomura, T. 2017. Intercellular translocation of molecules via plasmodesmata in the multiseriate filamentous brown alga, Halopteris congesta (Sphacelariales, Phaeophyceae). J. Phycol. 53:333-341. https://doi.org/10.1111/jpy.12498
- Pueschel, C. M. 1977. A freeze-etch study of the ultrastructure of red algal pit plugs. Protoplasma 91:15-30. https://doi.org/10.1007/BF01284193
- Pueschel, C. M. 1987. Absence of cap membrane as a characteristic of pit plugs in some red algal orders. J. Phycol. 23:150-156. https://doi.org/10.1111/j.1529-8817.1987.tb04437.x
- Pueschel, C. M. 1990. Cell structure. In Cole, K. M. & Sheath, R. G. (Eds.) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 7-42.
- Raven, J. A. 1997. Multiple origins of plasmodesmata. Eur. J. Phycol. 32:95-101. https://doi.org/10.1080/09670269710001737009
- Robards, A. W. & Lucas, W. J. 1990. Plasmodesmata. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:369-419. https://doi.org/10.1146/annurev.pp.41.060190.002101
- Su, S., Liu, Z., Chen, C., Zhang, Y., Wang, X., Zhu, L., Miao, L., Wang, X. -C. & Yuan, M. 2010. Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22:1373-1387. https://doi.org/10.1105/tpc.108.064212
- Terry, B. R. & Robards, A. W. 1987. Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171:145-157. https://doi.org/10.1007/BF00391090
- Tsekos, I. & Schnepf, E. 1985. The ultrastructure of carposporogenesis in Gigartina teedii (Roth) Lamour. (Gigartinales, Rhodophyceae): auxiliary cell, cystocarpic plant. Flora 173:81-96. https://doi.org/10.1016/s0367-2530(17)31991-6
- Wetherbee, R. 1979. "Transfer connections": specialized pathways for nutrient translocation in a red alga? Science 204:858-859. https://doi.org/10.1126/science.204.4395.858
- Wetherbee, R. & Quirk, H. M. 1982. The fine structure of secondary pit connection formation between the red algal alloparasite Holmsella australis and its red algal host Gracilarira furcellata. Protoplasma 110:166-176. https://doi.org/10.1007/BF01283319