Acknowledgement
The research described in this paper was financially supported by the Higher Education Commission (HEC) Pakistan under the National Research Program for Universities (NRPU) with Project ID 3820.
References
- Abdulkarem, M., Samsudin, K., Rokhani, F.Z. and Rasid, M.F. (2020), "Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges, and future direction", Struct. Health Monit., 19(3), 693-735. https://doi.org/10.1177/1475921719854528.
- Ali, M.R. and Okabayashi, T. (2011), "System identification of highway bridges from ambient vibration using subspace stochastic realization theories", Earthq. Struct., 2(2), 189-206. https://doi.org/10.12989/eas.2011.2.2.189.
- Allemang, R.J. (1982), "A correlation coefficient for modal vector analysis", Proceedings of the 1st International Modal Analysis Conference, 110-116.
- Alvandi, A. and Cremona, C. (2006), "Assessment of vibration-based damage identification techniques", J. Sound Vib., 292(1-2), 179-202. https://doi.org/10.1016/j.jsv.2005.07.036.
- Amezquita-Sanchez, J.P. and Adeli, H. (2016), "Signal processing techniques for vibration-based health monitoring of smart structures", Archives Comput. Meth. Eng., 23(1), 1-15. https://doi.org/10.1007/s11831-014-9135-7.
- Andersen, E. and Pedersen, L. (1994), "Structural monitoring of the great belt east bridge", Symposium on Strait Crossings.
- Aygun, B. and Gungor, V.C. (2011), "Wireless sensor networks for structure health monitoring: Recent advances and future research directions", Sensor Rev., 31(3), 261-276. https://doi.org/10.1108/02602281111140038.
- Bagherahmadi, S.A. and Seyedpoor, S.M. (2018), "Structural damage detection using a damage probability index based on frequency response function and strain energy concept", Struct. Eng. Mech., 67(4), 327-336. http://dx.doi.org/10.12989/sem.2018.67.4.327.
- Bakir, P.G. (2012), "Instrumentation and system identification of a typical school building in Istanbul", Struct. Eng. Mech., 43(2), 179-197. https://doi.org/10.12989/sem.2012.43.2.179.
- Bhuiyan, M.Z.A., Wu, J., Wang, G., Cao, J., Jiang, W. and Atiquzzaman, M. (2017), "Towards cyber-physical systems design for structural health monitoring: Hurdles and opportunities", ACM Transactions Cyber Phys. Syst., 1(4), 1-26. https://doi.org/10.1145/3086508.
- Bisht, S.S. and Singh, M.P. (2012), "Detecting sudden changes in stiffness using high-pass filters", Struct. Health Monit., 19(3), 319-331. https://doi.org/10.1002/stc.433.
- Bulajic, B.D., Todorovska, M.I., Manic, M.I. and Trifunac, M.D. (2020), "Structural health monitoring study of the ZOIL building using earthquake records", Soil Dynam. Earthq. Eng., 133, 106105. https://doi.org/10.1016/j.soildyn.2020.106105.
- Cabboi, A., Magalhaes, F., Gentile, C. and Cunha, A. (2017), "Automated modal identification and tracking: Application to an iron arch bridge", Struct. Health Monit., 24(1), e1854. https://doi.org/10.1002/stc.1854.
- Caetano, E., Cunha, A., Magalhaes, F. and Moutinho, C. (2010), "Studies for controlling human-induced vibration of the Pedro e Ines footbridge, Portugal. Part 1: Assessment of dynamic behaviour", Eng. Struct., 32(4), 1069-1081. https://doi.org/10.1016/j.engstruct.2009.12.034.
- Caetano, E., Cunha, A., Moutinho, C. and Magalhaes, F. (2010), "Studies for controlling human-induced vibration of the Pedro e Ines footbridge, Portugal. Part 2: Implementation of tuned mass dampers", Eng. Struct., 32(4), 1082-1091. https://doi.org/10.1016/j.engstruct.2009.12.033.
- Capecchi, D. and Vestroni, F. (1999), "Monitoring of structural systems by using frequency data", Earthq. Eng. Struct. Dynam., 28(5), 447-461. https://doi.org/10.1002/(SICI)1096-9845(199905)28:5<447::AID-EQE812>3.0.CO;2-2.
- Cara, F.J., Carpio, J., Juan, J. and Alarcon, E. (2012), "An approach to operational modal analysis using the expectation maximization algorithm", Mech. Syst. Signal Pr., 31, 109-129. https://doi.org/10.1016/j.ymssp.2012.04.004.
- Cawley, P. and Adams, R.D. (1979), "The location of defects in structures from measurements of natural frequencies", J. Strain Anal. Eng. Des., 14(2), 49-57. https://doi.org/10.1243/03093247V142049.
- Ceylan, H., Yavas, S., Dong, L., Jiao, Y., Yang, S., Kim, S., Gopalakrishnan, K. and Taylor, P. (2016), "Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements, Volume I", InTrans Project Reports, Iowa State University, Institute for Transportation, U.S.A.
- Chalioris, C.E., Voutetaki, M.E. and Liolios, A.A. (2020), "Structural health monitoring of seismically vulnerable RC frames under lateral cyclic loading", Earthq. Struct., 19(1), 29-44. https://doi.org/10.12989/eas.2020.19.1.29.
- Deraemaeker, A., Reynders, E., De Roeck, G. and Kullaa, J. (2008), "Vibration-based structural health monitoring using output-only measurements under changing environment", Mech. Syst. Signal Pr., 22(1), 34-56. https://doi.org/10.1016/j.ymssp.2007.07.004.
- Devriendt, C., Magalhaes, F., Weijtjens, W., De Sitter, G., Cunha, A. and Guillaume, P. (2014), "Structural health monitoring of offshore wind turbines using automated operational modal analysis", Struct. Health Monit., 13(6), 644-659. https://doi.org/10.1177/1475921714556568.
- Dinh-Cong, D., Nguyen-Thoi, T. and Nguyen, D.T. (2020), "A FE model updating technique based on SAP2000-OAPI and enhanced SOS algorithm for damage assessment of full-scale structures", Appl. Soft Comput., 89, 106100. https://doi.org/10.1016/j.asoc.2020.106100.
- Dinh, H., Nagayama, T. and Fujino, Y. (2012), "Structural parameter identification by use of additional known masses and its experimental application", Struct. Health Monit., 19(3), 436-450. https://doi.org/10.1002/stc.444.
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), "Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review", LA-13070-MS, Los Alamos National Lab. https://doi.org/10.2172/249299.
- Domaneschi, M., Sigurdardottir, D. and Glisic, B. (2017), "Damage detection on output-only monitoring of dynamic curvature in composite decks", Struct. Monit. Maint., 4(1), 1-15. https://doi.org/10.12989/smm.2017.4.1.001.
- Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419.
- Farrar, C.R. and Worden, K. (2010), "An introduction to structural health monitoring", New Trends Vib. Based Struct. Health Monit., 1-17. https://doi.org/10.1098/rsta.2006.1928.
- Frigui, F., Faye, J.P., Martin, C., Dalverny, O., Peres, F. and Judenherc, S. (2018), "Global methodology for damage detection and localization in civil engineering structures", Eng. Struct., 171, 686-695. https://doi.org/10.1016/j.engstruct.2018.06.026.
- Garcia-Palencia, A., Santini-Bell, E., Gul, M. and Catbas, N. (2015), "A FRF-based algorithm for damage detection using experimentally collected data", Struct. Monit. Maint., 2(4), 399-418. http://dx.doi.org/10.12989/smm.2015.2.4.399.
- Gentile, C., Guidobaldi, M. and Saisi, A. (2016), "One-year dynamic monitoring of a historic tower: Damage detection under changing environment", Meccanica, 51(11), 2873-2889. https://doi.org/10.1007/s11012-016-0482-3.
- Ghannadi, P. and Kourehli, S.S. (2019), "Model updating and damage detection in multi-story shear frames using Salp swarm algorithm", Earthq. Struct., 17(1), 63-73. https://doi.org/10.12989/eas.2019.17.1.063.
- Gillich, G.R. and Praisach, Z.I. (2012), "Robust method to identify damages in beams based on frequency shift analysis", Health Monit. Struct. Biologic. Syst. 8348, 367-378.
- Guo, Y., Kwon, D.K. and Kareem, A. (2016), "Near-real-time hybrid system identification framework for civil structures with application to Burj Khalifa", J. Struct. Eng., 142(2), 04015132. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001402.
- Harris, H.G. and Sabnis, G. (1999), Structural Modeling and Experimental Techniques, CRC press.
- Hipley, P. (2001), "Caltrans' current state-of-practice", Proceedings of the Instrumental Systems for Diagnostics Seismic Response of Bridges Dams, 3-7.
- Homaei, F., Shojaee, S. and Amiri, G.G. (2014), "A direct damage detection method using multiple damage localization index based on mode shapes criterion", Struct. Eng. Mech., 49(2), 183-202. https://doi.org/10.12989/sem.2014.49.2.183.
- Hu, W.H., Caetano, E. and Cunha, A. (2013), "Structural health monitoring of a stress-ribbon footbridge", Eng. Struct., 57, 578-593. https://doi.org/10.1016/j.engstruct.2012.06.051.
- Iacovino, C., Ditommaso, R., Ponzo, F. and Limongelli, M. (2018), "The interpolation evolution method for damage localization in structures under seismic excitation", Earthq. Eng. Struct. Dynam., 47(10), 2117-2136. https://doi.org/10.1002/eqe.3062.
- Kilic, G. (2014), "Wireless sensor network protocol comparison for bridge health assessment", Struct. Eng. Mech., 49(4), 509-521. https://doi.org/10.12989/sem.2014.49.4.509.
- Kim, J.T., Ryu, Y.S., Cho, H.M. and Stubbs, N. (2003), "Damage identification in beam-type structures: Frequency-based method vs mode-shape-based method", Eng. Struct., 25(1), 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9.
- Kim, J.T. and Stubbs, N. (2002), "Improved damage identification method based on modal information", J. Sound Vib., 252(2), 223-238. https://doi.org/10.1006/jsvi.2001.3749.
- Kim, J.T. and Stubbs, N. (2003), "Crack detection in beam-type structures using frequency data", J. Sound Vib., 259(1), 145-160. https://doi.org/10.1006/jsvi.2002.5132
- Le, T.P. and Paultre, P. (2012), "Modal identification based on continuous wavelet transform and ambient excitation tests", J. Sound Vib., 331(9), 2023-2037. https://doi.org/10.1002/stc.1622.
- Li, Q., Zhi, L., Yi, J., To, A. and Xie, J. (2014), "Monitoring of typhoon effects on a super-tall building in Hong Kong", Struct. Health Monit., 21(6), 926-949. https://doi.org/10.1002/stc.1622.
- Li, Y. and Chen, Y. (2013), "A review on recent development of vibration-based structural robust damage detection", Struct. Eng. Mech., 45(2), 159-168. https://doi.org/10.12989/sem.2013.45.2.159.
- Libelium (2017), http://libelium.com/development/waspmote/documentation/waspmote-technicalguide.
- Liu, H., Yu, L., Luo, Z. and Chen, Z. (2020), "Multi-strategy structural damage detection based on included angle of vectors and sparse regularization", Struct. Eng. Mech., 75(4), 415-424. https://doi.org/10.12989/sem.2020.75.4.415.
- Lynch, J.P. (2007), "An overview of wireless structural health monitoring for civil structures", Philos. T. R. Soc. A, 365(1851), 345-372. https://doi.org/10.1098/rsta.2006.1932.
- Lynch, J.P. and Loh, K.J. (2006), "A summary review of wireless sensors and sensor networks for structural health monitoring", Shock Vib., 38(2), 91-130. https://doi.org/10.1177/0583102406061499.
- Magalhaes, F., Cunha, A. and Caetano, E. (2012), "Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection", Mech. Syst. Signal Pr., 28, 212-228. https://doi.org/10.1016/j.ymssp.2011.06.011.
- Martins, N., Caetano, E., Diord, S., Magalhaes, F. and Cunha, A. (2014), "Dynamic monitoring of a stadium suspension roof: Wind and temperature influence on modal parameters and structural response", Eng. Struct., 59, 80-94. https://doi.org/10.1016/j.engstruct.2013.10.021.
- Mehboob, S., Zamana, Q.U. and Ahmad, S. (2020), "Numerical study for evaluation of a vibration based damage index for effective damage detection", B. Polish Acad. Sci. Tech. Sci., 1443-1456. https://doi.org/10.24425/bpasts.2020.134651.
- Mehboob, S. and Zamana, Q.U. (2021), "Vibration-based method for story-level damage detection of the reinforced concrete structure", Comput. Concrete, 27(1), 29-39. https://doi.org/10.12989/cac.2021.27.1.029.
- Mei, Q., Gul, M. and Boay, M. (2019), "Indirect health monitoring of bridges using Mel-frequency cepstral coefficients and principal component analysis", Mech. Syst. Signal Pr., 119, 523-546. https://doi.org/10.1016/j.ymssp.2018.10.006.
- Mousavi, Z., Ettefagh, M.M., Sadeghi, M.H. and Razavi, S.N. (2020), "Developing deep neural network for damage detection of beam-like structures using dynamic response based on FE model and real healthy state", Appl. Acoust., 168, 107402. https://doi.org/10.1016/j.apacoust.2020.107402.
- Mufti, A.A. (2002), "Structural health monitoring of innovative Canadian civil engineering structures", Struct. Health Monit., 1(1), 89-103. https://doi.org/10.1177%2F147592170200100106. https://doi.org/10.1177%2F147592170200100106
- Nguyen, D.H., Nguyen, Q.B., Bui-Tien, T., De Roeck, G. and Wahab, M.A. (2020), "Damage detection in girder bridges using modal curvatures gapped smoothing method and convolutional neural network: Application to Bo Nghi bridge", Theor. Appl. Fract. Mec., 109, 102728. https://doi.org/10.1016/j.tafmec.2020.102728.
- Oliveira, G., Magalhaes, F., Cunha, A. and Caetano, E. (2016), "Development and implementation of a continuous dynamic monitoring system in a wind turbine", J. Civil Struct. Health Monit., 6(3), 343-353. https://doi.org/10.1007/s13349-016-0182-7.
- Omrani, R., Hudson, R.E. and Taciroglu, E. (2012), "Story-by- story estimation of the stiffness parameters of laterally- torsionally coupled buildings using forced or ambient vibration data: I. Formulation and verification", Earthq. Eng. Struct. Dynam., 41(12), 1609-1634. https://doi.org/10.1002/eqe.1192.
- Ou, J. (2004), "The state-of-the-art and application of intelligent health monitoring systems for civil infrastructures in mainland of China", Prog. Struct. Eng. Mech. Comput., 599-608.
- Pai, P.F. and Young, L.G. (2001), "Damage detection of beams using operational deflection shapes", Int. J. Solids Struct., 38(18), 3161-3192. https://doi.org/10.1016/S0020-7683(00)00274-2.
- Pedram, M., Esfandiari, A. and Khedmati, M.R. (2017), "Damage detection by a FE model updating method using power spectral density: numerical and experimental investigation", J. Sound Vib., 397, 51-76. https://doi.org/10.1016/j.jsv.2017.02.052.
- Pentaris, F., Stonham, J. and Makris, J. (2014), "A cost effective wireless structural health monitoring network for buildings in earthquake zones", Smart Mater. Struct., 23(10), 105010. https://doi.org/10.1088/0964-1726/23/10/105010.
- Pines, D. and Aktan, A.E. (2002), "Status of structural health monitoring of long-span bridges in the United States", Prog. Struct. Eng. Mater., 4(4), 372-380. https://doi.org/10.1002/pse.129.
- Porcu, M., Patteri, D., Melis, S. and Aymerich, F. (2019), "Effectiveness of the FRF curvature technique for structural health monitoring", Constr. Build. Mater., 226, 173-187. https://doi.org/10.1016/j.conbuildmat.2019.07.123.
- Providakis, C., Stefanaki, K., Voutetaki, M., Tsompanakis, J. and Stavroulaki, M. (2014), "A near and far-field monitoring technique for damage detection in concrete structures", Struct. Monit. Maint., 1(2), 159-171. https://doi.org/10.12989/smm.2014.1.2.159.
- Rainieri, C. and Fabbrocino, G. (2014), Operational Modal Analysis of Civil Engineering Structures, Springer, New York, 142, 143. https://doi.org/10.1007/978-1-4939-0767-0.
- Rajaravivarma, V., Yang, Y. and Yang, T. (2003), "An overview of wireless sensor network and applications", Proceedings of the 35th Southeastern Symposium on System Theory, Morgantown, March.
- Salawu, O. (1997), "Detection of structural damage through changes in frequency: a review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6.
- Silicon-Laboratories-Inc. (2013), Evolution of wireless sensor networks, Report Rev. 1.0. https://www.silabs.com/whitepapers?query=wireless.
- Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R. and Czarnecki, J.J. (2003), "A review of structural health monitoring literature: 1996-2001", Los Alamos National Laboratory, U.S.A.
- Stoykov, S. and Manoach, E. (2021), "Damage localization of beams based on measured forced responses", Mech. Syst. Signal Pr., 151, 107379. https://doi.org/10.1016/j.ymssp.2020.107379.
- Tamura, Y. and Suganuma, S.Y. (1996), "Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds", J. Wind Eng. Industrial Aerod., 59(2-3), 115-130. https://doi.org/10.1016/0167-6105(96)00003-7.
- Todorovska, M.I. (2009), "Seismic interferometry of a soil-structure interaction model with coupled horizontal and rocking response", B. Seismol. Soc. Am., 99(2A), 611-625. https://doi.org/10.1785/0120080191
- Topole, K.G. and Stubbs, N. (1995), "Non-destructive damage evaluation of a structure from limited modal parameters", Earthq. Eng. Struct. Dynam., 24(11), 1427-1436. https://doi.org/10.1002/eqe.4290241102.
- Torbol, M., Kim, S. and Chou, P. (2013), "Remote structural health monitoring systems for next generation SCADA", Smart Struct. Syst., 11(5), 511-531. https://doi.org/10.12989/sss.2013.11.5.511.
- Trifunac, M.D., Todorovska, M.I., Manic, M.I. and Bulajic, B.D. (2010), "Variability of the fixed-base and soil-structure system frequencies of a building-The case of Borik-2 building", Struct. Health Monit., 17(2), 120-151. https://doi.org/10.1002/stc.277.
- Ubertini, F., Cavalagli, N., Kita, A. and Comanducci, G. (2018), "Assessment of a monumental masonry bell-tower after 2016 Central Italy seismic sequence by long-term SHM", B. Earthq. Eng., 16(2), 775-801. https://doi.org/10.1007/s10518-017-0222-7.
- Vahidi, M., Vahdani, S., Rahimian, M., Jamshidi, N. and Kanee, A.T. (2019), "Evolutionary-base finite element model updating and damage detection using modal testing results", Struct. Eng. Mech., 70(3), 339-350. https://doi.org/10.12989/sem.2019.70.3.339.
- Venanzi, I., Kita, A., Cavalagli, N., Ierimonti, L. and Ubertini, F. (2020), "Earthquake-induced damage localization in an historic masonry tower through long-term dynamic monitoring and FE model calibration", B. Earthq. Eng., 18(5), 2247-2274. https://doi.org/10.1007/s10518-019-00780-4.
- Wang, H., Mao, J.X. and Xu, Z.D. (2020), "Investigation of dynamic properties of a long-span cable-stayed bridge during typhoon events based on structural health monitoring", J. Wind Eng. Industrial Aerod., 201, 104172. https://doi.org/10.1016/j.jweia.2020.104172.
- Wong, K.Y. (2004), "Instrumentation and health monitoring of cable-supported bridges", Struct. Health Monit., 11(2), 91-124. https://doi.org/10.1002/stc.33.
- Xia, Y., Hao, H., Brownjohn, J.M. and Xia, P.Q. (2002), "Damage identification of structures with uncertain frequency and mode shape data", Earthq. Eng. Struct. Dynam., 31(5), 1053-1066. https://doi.org/10.1002/eqe.137.
- Yan, A.M., Kerschen, G., De Boe, P. and Golinval, J.C. (2005), "Structural damage diagnosis under varying environmental conditions-part I: A linear analysis", Mech. Syst. Signal Pr., 19(4), 847-864. https://doi.org/10.1016/j.ymssp.2004.12.002.
- Yan, Y., Cheng, L., Wu, Z. and Yam, L. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Pr., 21(5), 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002.
- Yazdanpanah, O. and Seyedpoor, S. (2015), "A new damage detection indicator for beams based on mode shape data", Struct. Eng. Mech., 53(4), 725-744. https://doi.org/10.12989/sem.2015.53.4.725.
- Yi, T.H., Li, H.N. and Gu, M. (2012), "Sensor placement for structural health monitoring of Canton tower", Smart Struct. Syst., 10(4), 313-329. https://doi.org/10.12989/sss.2012.10.4_5.313.
- Yin, T., Ng, C.T. and Kotousov, A. (2021), "Damage detection of ultra-high-performance fibre-reinforced concrete using a harmonic wave modulation technique", Constr. Build. Mater., 313, 125306. https://doi.org/10.1016/j.conbuildmat.2021.125306.
- Yun, C.B., Lee, J.J., Kim, S.K. and Kim, J.W. (2003), "Recent R&D activities on structural health monitoring for civil infrastructures in Korea", KSCE J. Civil Eng., 7(6), 637-651. https://doi.org/10.1007/BF02829136.
- Zhang, L., Wu, G. and Cheng, X. (2020), "A rapid output-only damage detection method for highway bridges under a moving vehicle using long-gauge strain sensing and the fractal dimension", Measurement, 158, 107711. https://doi.org/10.1016/j.measurement.2020.107711.