DOI QR코드

DOI QR Code

Nonlinear semi-active/passive retrofit design evaluation using incremental dynamic analysis

  • Rodgers, Geoffrey W. (Department of Mechanical Engineering, University of Canterbury) ;
  • Chase, J. Geoffrey (Department of Mechanical Engineering, University of Canterbury) ;
  • Roland, Thomas (Department of Mechanical Engineering, University of Canterbury) ;
  • Macrae, Gregory A. (Department of Civil Engineering, University of Canterbury) ;
  • Zhou, Cong (Department of Mechanical Engineering, University of Canterbury)
  • 투고 : 2021.03.01
  • 심사 : 2022.01.14
  • 발행 : 2022.02.25

초록

Older or damaged structures can require significant retrofit to ensure they perform well in subsequent earthquakes. Supplemental damping devices are used to achieve this goal, but increase base shear forces, foundation demand, and cost. Displacement reduction without increasing base shear is possible using novel semi-active and recently-created passive devices, which offer energy dissipation in selected quadrants of the force-displacement response. Combining these devices with large, strictly passive energy dissipation devices can offer greater, yet customized response reductions. Supplemental damping to reduce response without increasing base shear enables a net-zero base shear approach. This study evaluates this concept using two incremental dynamic analyses (IDAs) to show displacement reductions up to 40% without increasing base shear, more than would be achieved for either device alone, significantly reducing the risk of response exceeding the unaltered structural case. IDA results lead to direct calculation of reductions in risk and annualized economic cost for adding these devices using this net-zero concept, thus quantifying the trade-off. The overall device assessment and risk analysis method presented provides a generalizable proof-of-concept approach, and provides a framework for assessing the impact and economic cost-benefit of using modern supplemental energy dissipation devices.

키워드

참고문헌

  1. Asgarian, B., Mirtaheri, M.Y.M., Samani, H.R. and Alanjari, P. (2010), "Incremental dynamic analysis of high-rise towers", Struct. Des. Tall Spec. Build., 19(8), 922-934. https://doi.org/10.1002/tal.518.
  2. Azarbakht, A. and Dolsek, M. (2011), "Progressive incremental dynamic analysis for first-mode dominated structures", J. Struct. Eng., 137(3), 445-455. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000282.
  3. Bacht, T., Chase, J.G., Macrae, G., Rodgers, G.W., Rabczuk, T., Dhakal, R.P. and Desombre, J. (2011), "HF2V dissipator effects on the performance of a 3 story moment frame", J. Constr. Steel Res., 67(12), 1843-1849. https://doi.org/10.1016/j.jcsr.2011.05.007.
  4. Bakhshinezhad, S. and Mohebbi, M. (2019), "Multiple failure criteria-based fragility curves for structures equipped with SATMDs", Earthq. Struct., 17(5), 463-475. https://doi.org/10.12989/eas.2019.17.5.463.
  5. Barroso, L.R., Chase, J.G. and Hunt, S. (2003), "Resettable smart dampers for multi-level seismic hazard mitigation of steel moment frames", J. Struct. Control, 10(1), 41-58. https://doi.org/10.1002/stc.16.
  6. Biot, M.A. (1941), "A mechanical analyzer for the prediction of earthquake stresses", B. Seismol. Soc. Am., 31(2), 151-171. https://doi.org/10.1785/BSSA0310020151.
  7. Bitaraf, M., Ozbulut, O.E., Hurlebaus, S. and Barroso, L. (2010), "Application of semi-active control strategies for seismic protection of buildings with MR dampers", Eng. Struct., 32(10), 3040-3047. https://doi.org/10.1016/j.engstruct.2010.05.023.
  8. Bobrow, J.E., Jabbari, F. and Thai, K. (2000), "A new approach to shock isolation and vibration suppression using a resetable actuator", J. Dynam. Syst. Meas. Control., 122(3), 570-573. https://doi.org/10.1115/1.1286629.
  9. Borzouie, J., Macrae, G.A., Chase, J.G., Rodgers, G.W. and Clifton, G.C. (2015), "Experimental studies on cyclic performance of column base weak axis aligned asymmetric friction connection", J. Constr. Steel Res., 112, 252-262. https://doi.org/10.1016/j.jcsr.2015.05.007.
  10. Caterino, N., Spizzuoco, M. and Occhiuzzi, A. (2015), "Shaking table testing of a steel frame structure equipped with semi-active MR dampers: comparison of control algorithms", Smart Struct. Syst., 15(4), 963-995. http://dx.doi.org/10.12989/sss.2015.15.4.963.
  11. Chase, J.G., Barroso, L.R. and Hunt, S. (2004a), "The impact of total acceleration control for semi-active earthquake hazard mitigation", Eng. Struct., 26(2), 201-209. https://doi.org/10.1016/j.engstruct.2003.09.008.
  12. Chase, J.G., Barroso, L.R. and Hunt, S. (2004b), "A semi-active acceleration-based control for seismically excited civil structures including control input impulses", Struct. Eng. Mech., 18(3), 287-301. https://doi.org/10.12989/sem.2004.18.3.287.
  13. Chase, J.G., Mulligan, K.J., Gue, A., Alnot, T., Rodgers, G., Mander, J.B., Elliott, R., Deam, B., Cleeve, L. and Heaton, D. (2006), "Re-shaping hysteretic behaviour using semi-active resettable device dampers", Eng. Struct., 28(10), 1418-1429. https://doi.org/10.1016/j.engstruct.2006.01.011.
  14. Chase, J.G. and Rodgers, G.W. (2019), Passive Damper, U.S.A patent application US20190153740A1.
  15. Chen, X., Li, J., Li, Y. and Gu, X. (2016), "Lyapunov-based semi-active control of adaptive base isolation system employing magnetorheological elastomer base isolators", Earthq. Struct., 11(6), 1077-1099. https://doi.org/10.12989/eas.2016.11.6.1077.
  16. Chen, X.Q., Chase, J.G., Mulligan, K.J., Rodgers, G.W. and Mander, J.B. (2008), "Novel controllable semiactive-devices for reshaping structural response", IEEE T. Mechatron., 13(6), 647-657. https://doi.org/10.1109/TMECH.2008.2003958.
  17. Chopra, A.K. (1995), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall, Upper Saddle River, NJ, U.S.A.
  18. Corman, S., Chase, J.G., Macrae, G.A. and Rodgers, G.W. (2012a), "Development and spectral analysis of an advanced diamond shaped resetable device control law", Eng. Struct., 40, 1-8. https://doi.org/10.1016/j.engstruct.2012.02.013.
  19. Corman, S., Macrae, G.A., Rodgers, G.W. and Chase, J.G. (2012b), "Nonlinear design and sizing of semi-active resetable dampers for seismic performance", Eng. Struct., 39, 139-147. https://doi.org/10.1016/j.engstruct.2012.01.015.
  20. Dhakal, R.P., Mander, J.B. and Mashiko, N. (2006), "Identification of critical ground motions for seismic performance assessment of structures", Earthq. Eng. Struct. Dynam., 35(8), 989-1008. https://doi.org/10.1002/eqe.568.
  21. Erramouspe, J., Kiousis, P.D., Christenson, R. and Vincent, T. (2007), "A resetting stiffness dynamic controller and its bench-scale implementation", Eng. Struct., 29(10), 2602-2610. https://doi.org/10.1016/j.engstruct.2007.01.014.
  22. Etedali, S., Tavakoli, S. and Sohrabi, M.R. (2016), "Design of a decoupled PID controller via MOCS for seismic control of smart structures", Earthq. Struct., 10(5), 1067-1087. https://doi.org/10.12989/eas.2016.10.5.1067.
  23. Fitzjohn, J., Zhou, C. and Chase, J.G. (2020), "A combined SHM/IDA method for assessing collapse capacity and risk in subsequent ground motions", J. Civil Struct. Health Monit., 10, 17-28. https://doi.org/10.1007/s13349-019-00366-3.
  24. Golzar, F.G., Rodgers, G.W. and Chase, J.G. (2017), "Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures", Struct. Eng. Mech., 61(6), 701-709. https://doi.org/10.12989/sem.2017.61.6.701.
  25. Golzar, F.G., Rodgers, G.W. and Chase, J.G. (2018a), "Design and experimental validation of a re-centring viscous dissipater", Struct., 13, 193-200. https://doi.org/10.1016/j.istruc.2017.12.008.
  26. Golzar, F.G., Rodgers, G.W. and Chase, J.G. (2018b), "Nonlinear spectral analysis for structures with re-centring D3 viscous dissipaters", J. Earthq. Eng., 24(10), 1530-1546. https://doi.org/10.1080/13632469.2018.1466742.
  27. Hadidi, A., Azar, B.F. and Shirgir, S. (2019), "Reliability assessment of semi-active control of structures with MR damper", Earthq. Struct., 17(2), 131-141. https://doi.org/10.12989/eas.2019.17.2.131.
  28. Han, S.W. and Chopra, A.K. (2006), "Approximate incremental dynamic analysis using the modal pushover analysis procedure", Earthq. Eng. Struct. Dynam., 35(15), 1853-1873. https://doi.org/10.1002/eqe.605.
  29. Hazaveh, N., Rodgers, G., Chase, J. and Pampanin, S. (2017a), "Reshaping structural hysteresis response with semi-active viscous damping", B. Earthq. Eng., 15(4), 1789-1806. https://doi.org/10.1007/s10518-016-0036-z.
  30. Hazaveh, N.K., Chase, J.G., Rodgers, G.W., Pampanin, S. and Kordani, R. (2020), "Seismic behavior of a self-centering system with 2-4 viscous damper", J. Earthq. Eng., 24(3), 470-484. https://doi.org/10.1080/13632469.2018.1453415.
  31. Hazaveh, N.K., Rad, A.A., Rodgers, G.W., Chase, J.G., Pampanin, S. and Ma, Q.T. (2018a), "Shake table testing of a low damage steel building with 2-4 displacement dependent (D3) viscous damper", Key Eng. Mater., 763, 331-338. https://doi.org/10.4028/www.scientific.net/KEM.763.331.
  32. Hazaveh, N.K., Rodgers, G.W., Chase, J.G. and Pampanin, S. (2017b), "Experimental test and validation of a direction-and displacement-dependent viscous damper", J. Eng. Mech., 143(11), 04017132. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001354.
  33. Hazaveh, N.K., Rodgers, G.W., Chase, J.G. and Pampanin, S. (2018b), "Passive direction displacement dependent damping (D3) device", B. New Zealand Soc. Earthq. Eng., 51(2), 105-112. https://doi.org/10.5459/bnzsee.51.2.105-112.
  34. Hormozabad, S.J. and Ghorbani-Tanha, A.K. (2020), "Semi-active fuzzy control of lali cable-stayed bridge using MR dampers under seismic excitation", Front. Struct. Civil Eng., 14, 706-721. https://doi.org/10.1007/s11709-020-0612-9.
  35. Jabbari, F. and Bobrow, J.E. (2002), "Vibration suppression with a resetable device", J. Eng. Mech., 128(9), 916-924. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(916).
  36. Kakavand, M.R.A. and Allahvirdizadeh, R. (2019), "Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural, shear, or axial failure modes", Front. Struct. Civil Eng., 13(5), 1251-1270. https://doi.org/10.1007/s11709-019-0554-2.
  37. Labbe, P. (2019), "Should we go ahead with the response spectrum?", Pure Appl. Geophys., 177(5), 2411-2420. https://doi.org/10.1007/s00024-019-02346-6.
  38. Latham, A.D., Reay, A.M. and Pampanin, S. (2013), "Kilmore street medical centre: Application of a post-tensioned steel rocking system", Proc. Steel Innov. Conf., Christchurch, New Zealand.
  39. Lin, C.C., Lu, L.Y., Lin, G.L. and Yang, T.W. (2010), "Vibration control of seismic structures using semi-active friction multiple tuned mass dampers", Eng. Struct., 32(10), 3404-3417. https://doi.org/10.1016/j.engstruct.2010.07.014.
  40. Mander, J.B., Dhakal, R.P., Mashiko, N. and Solberg, K.M. (2007), "Incremental dynamic analysis applied to seismic financial risk assessment of bridges", Eng. Struct., 29(10), 2662-2672. https://doi.org/10.1016/j.engstruct.2006.12.015.
  41. Mander, T.J., Rodgers, G.W., Chase, J.G., Mander, J.B., Macrae, G.A. and Dhakal, R.P. (2009), "Damage avoidance design steel beam-column moment connection using high-force-to-volume dissipators", J. Struct. Eng., 135(11), 1390-1397. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000065.
  42. Mulligan, K.J., Chase, J.G., Mander, J.B., Rodgers, G.W. and Elliott, R.B. (2010), "Nonlinear models and validation for resetable device design and enhanced force capacity", Struct. Health Monit., 17(3), 301-316. https://doi.org/10.1002/stc.298.
  43. Mulligan, K.J., Chase, J.G., Mander, J.B., Rodgers, G.W., Elliott, R.B., Franco-Anaya, R. and Carr, A.J. (2009), "Experimental validation of semi-active resetable actuators in a 1/5th scale test structure", Earthq. Eng. Struct. Dynam., 38(4), 517-536. https://doi.org/10.1002/eqe.868.
  44. Ozbulut, O.E., Bitaraf, M. and Hurlebaus, S. (2011), "Adaptive control of base-isolated structures against near-field earthquakes using variable friction dampers", Eng. Struct., 33(12), 3143-3154. https://doi.org/10.1016/j.engstruct.2011.08.022.
  45. Ozbulut, O.E. and Hurlebaus, S. (2011), "Re-centering variable friction device for vibration control of structures subjected to near-field earthquakes", Mech. Syst. Signal Process., 25(8), 2849-2862. https://doi.org/10.1016/j.ymssp.2011.04.017.
  46. Pekcan, G., Mander, J.B. and Chen, S.S. (1999), "Fundamental considerations for the design of non-linear viscous dampers", Earthq. Eng. Struct. Dynam., 28(11), 1405-1425. https://doi.org/10.1002/(SICI)1096-9845(199911)28:11%3C1405::AID-EQE875%3E3.0.CO;2-A.
  47. Rodgers, G., Chase, J., Mulligan, K., Mander, J. and Elliott, R. (2009), "Customising semi-active resetable device behaviour for abating seismic structural response", B. New Zealand Soc. Earthq. Eng., 42(3), 147-156. https://doi.org/10.5459/bnzsee.42.3.147-156.
  48. Rodgers, G., Denmead, C., Leach, N., Chase, J. and Mander, J. (2006), "Spectral evaluation of high force-volume lead dampers for structural response reduction", Proc. New Zealand Soc. Earthq. Eng., Annual Conference (NZSEE 2006), March, Napier, New Zealand.
  49. Rodgers, G., Solberg, K., Chase, J., Mander, J., Bradley, B., Dhakal, R. and Li, L. (2008a), "Performance of a damage-protected beam-column subassembly utilizing external HF2V energy dissipation devices", Earthq. Eng. Struct. Dynam., 37(13), 1549-1564. https://doi.org/10.1002/eqe.830.
  50. Rodgers, G.W., Chase, J.G., Mander, J.B., Leach, N.C. and Denmead, C.S. (2007a), "Experimental development, tradeoff analysis and design implementation of high force-to-volume damping technology", B. New Zealand Soc. Earthq. Eng., 40(2), 35-48. https://doi.org/10.5459/bnzsee.40.2.35-48.
  51. Rodgers, G.W., Chase, J.G., Roland, T. and Macrae, G.A. (2012a), "Spectral analysis for a semi-active-passive net-zero base-shear design concept", Earthq. Eng. Struct. Dynam., 41(8), 1207-1216. https://doi.org/10.1002/eqe.1177.
  52. Rodgers, G.W., Mander, J.B. and Chase, J.G. (2011), "Semi-explicit rate-dependent modeling of damage-avoidance steel connections using HF2V damping devices", Earthq. Eng. Struct. Dynam., 40(9), 977-992. https://doi.org/10.1002/eqe.1073
  53. Rodgers, G.W., Mander, J.B., Chase, J.G., Dhakal, R.P., Leach, N.C. and Denmead, C.S. (2008b), "Spectral analysis and design approach for high force-to-volume extrusion damper-based structural energy dissipation", Earthq. Eng. Struct. Dynam., 37(2), 207-223. https://doi.org/10.1002/eqe.752.
  54. Rodgers, G.W., Mander, J.B., Chase, J.G., Mulligan, K.J., Deam, B. and Carr, A.J. (2006b), "Re-shaping hysteretic behaviour using resetable devices to customise structural response and forces", 8th US Nation. Conf. Earthq. Eng., April, San Francisco, CA, U.S.A.
  55. Rodgers, G.W., Mander, J.B., Chase, J.G., Mulligan, K.J., Deam, B.L. and Carr, A. (2007b), "Re-shaping hysteretic behaviour - spectral analysis and design equations for semi-active structures", Earthq. Eng. Struct. Dynam., 36(1), 77-100. https://doi.org/10.1002/eqe.624.
  56. Rodgers, G.W., Solberg, K.M., Mander, J.B., Chase, J.G., Bradley, B.A. and Dhakal, R.P. (2012b), "High-force-to-volume seismic dissipators embedded in a jointed precast concrete frame", J. Struct. Eng., 138(3), 375-386. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000329.
  57. Shannon, T., Borzouie, J. and Pampanin, S. (2020), "The low-damage design of hybrid concrete rocking walls for Turanga Library, Christchurch, New Zealand", SESOC J., 33(1), 74-83. https://search.informit.org/doi/10.3316/informit.171907811454605.
  58. Solberg, K., Mashiko, N., Mander, J.B. and Dhakal, R.P. (2009), "Performance of a damage-protected highway bridge pier subjected to bidirectional earthquake attack", J. Struct. Eng., 135(5), 469-478. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:5(469).
  59. Solberg, K.M., Dhakal, R.P., Mander, J.B. and Bradley, B.A. (2008), "Computational and rapid expected annual loss estimation methodologies for structures", Earthq. Eng. Struct. Dynam., 37(1), 81-101. https://doi.org/10.1002/eqe.746.
  60. Sommerville, P., Smith, N., Punyamurthula, S. and Sun, J. (1997), "Development of ground motion time histories for phase II of the FEMA/SAC steel project", SAC Background Document Report, SAC/BD-97/04.
  61. Standards New Zealand (2004), Structural Design Actions Part 5 Earthquake Actions - New Zealand, NZS1170.5:2004, New Zealand.
  62. Sun, S.S., Deng, H.X., Du, H.P., Li, W.H., Yang, J., Liu, G.P., Alici, G. and Yan, T.H. (2015), "A compact variable stiffness and damping shock absorber for vehicle suspension", IEEE T. Mechatron., 20(5), 2621-2629. https://doi.org/10.1109/TMECH.2015.2406319.
  63. Trifunac, M.D. (2012), "Earthquake response spectra for performance based design-A critical review", Soil Dynam. Earthq. Eng., 37, 73-83. https://doi.org/10.1016/j.soildyn.2012.01.019.
  64. Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dynam., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
  65. Vishnupriya, V., Chase, J.G., Rodgers, G. and Zhou, C. (2020), "Finite element method for designing HF2V device force capacity", 2020 NZSEE Annual Tech. Conf., April, Wellington, New Zealand.
  66. Vishnupriya, V., Rodgers, G., Mander, J. and Chase, J. (2018), "Precision design modelling of HF2V devices", Struct., 14, 243-250. https://doi.org/10.1016/j.istruc.2018.03.007.
  67. Yang, J.N., Bobrow, J., Jabbari, F., Leavitt, J., Cheng, C.P. and Lin, P.Y. (2007), "Full-scale experimental verification of resetable semi-active stiffness dampers", Earthq. Eng. Struct. Dynam., 36(9), 1255-1273. https://doi.org/10.1002/eqe.681.
  68. Yu, Y., Royel, S., Li, J., Li, Y. and Ha, Q. (2016), "Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control", Earthq. Struct., 11(6), 943-966. http://dx.doi.org/10.12989/eas.2016.11.6.943.
  69. Zizouni, K., Fali, L., Sadek, Y. and Bousserhane, I.K. (2019), "Neural network control for earthquake structural vibration reduction using MRD", Front. Struct. Civil Eng., 13, 1171-1182. https://doi.org/10.1007/s11709-019-0544-4.