DOI QR코드

DOI QR Code

MiR-182-5p Mediated by Exosomes Derived From Bone Marrow Mesenchymal Stem Cell Attenuates Inflammatory Responses by Targeting TLR4 in a Mouse Model of Myocardial Infraction

  • Chuang Sun (Department of Cardiology, Xi'an International Medical Center Hospital) ;
  • Wei Li (Department of Cardiology, Xi'an International Medical Center Hospital) ;
  • Yanhong Li (Department of Cardiology, Xi'an International Medical Center Hospital) ;
  • Jian Chen (Department of Cardiology, Xi'an International Medical Center Hospital) ;
  • Huixian An (Department of Cardiology, Xi'an International Medical Center Hospital) ;
  • Guangwei Zeng (Department of Cardiology, Xi'an International Medical Center Hospital) ;
  • Tingting Wang (Department of Cardiology, Xi'an International Medical Center Hospital) ;
  • Yazhou Guo (College of Veterinary Medicine, Northwest A&F University) ;
  • Changying Wang (Department of Cardiology, Xi'an International Medical Center Hospital)
  • Received : 2022.05.04
  • Accepted : 2022.08.22
  • Published : 2022.12.31

Abstract

Exosomes derived from mesenchymal stem cells (MSCs) could protect against myocardial infarction (MI). TLR4 is reported to play an important role in MI, while microRNA-182-5p (miR-182-5p) negatively regulates TLR4 expression. Therefore, we hypothesize that MSCs-derived exosomes overexpressing miR-182-5p may have beneficial effects on MI. We generated bone marrow mesenchymal stem cells (BM-MSCs) and overexpressed miR-182-5p in these cells for exosome isolation. H2O2-stimulated neonatal mouse ventricle myocytes (NMVMs) and MI mouse model were employed, which were subjected to exosome treatment. The expression of inflammatory factors, heart function, and TLR4 signaling pathway activation were monitored. It was found that miR-182-5p decreased TLR4 expression in BM-MSCs and NMVMs. Administration of exosomes overexpressing miR-182-5p to H2O2-stimulated NMVMs enhanced cell viability and suppressed the expression of inflammatory cytokines. In addition, they promoted heart function, suppressed inflammatory responses, and de-activated TLR4/NF-κB signaling pathway in MI mice. In conclusion, miR-182-5p transferred by the exosomes derived from BM-MSCs protected against MI-induced impairments by targeting TLR4.

Keywords

References

  1. Anderson JL, Morrow DA. Acute myocardial infarction. N Engl J Med 2017;376:2053-2064. https://doi.org/10.1056/NEJMra1606915
  2. Chen Y, Zhao Y, Chen W, Xie L, Zhao ZA, Yang J, Chen Y, Lei W, Shen Z. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther 2017;8:268.
  3. Sandor F, Buc M. Toll-like receptors. I. Structure, function and their ligands. Folia Biol (Praha) 2005;51:148-157.
  4. Frantz S, Ertl G, Bauersachs J. Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med 2007;4:444-454. https://doi.org/10.1038/ncpcardio0938
  5. Yang Y, Lv J, Jiang S, Ma Z, Wang D, Hu W, Deng C, Fan C, Di S, Sun Y, et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis 2016;7:e2234.
  6. Liu L, Wang Y, Cao ZY, Wang MM, Liu XM, Gao T, Hu QK, Yuan WJ, Lin L. Up-regulated TLR4 in cardiomyocytes exacerbates heart failure after long-term myocardial infarction. J Cell Mol Med 2015;19:2728-2740. https://doi.org/10.1111/jcmm.12659
  7. Shimamoto A, Chong AJ, Yada M, Shomura S, Takayama H, Fleisig AJ, Agnew ML, Hampton CR, Rothnie CL, Spring DJ, et al. Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury. Circulation 2006;114:I270-I274. https://doi.org/10.1161/CIRCULATIONAHA.105.000901
  8. Ramirez-Carracedo R, Tesoro L, Hernandez I, Diez-Mata J, Pineiro D, Hernandez-Jimenez M, Zamorano JL, Zaragoza C. Targeting TLR4 with ApTOLL improves heart function in response to coronary ischemia reperfusion in pigs undergoing acute myocardial infarction. Biomolecules 2020;10:1167.
  9. Wang J, Xu Z, Chen X, Li Y, Chen C, Wang C, Zhu J, Wang Z, Chen W, Xiao Z, et al. MicroRNA-182-5p attenuates cerebral ischemia-reperfusion injury by targeting Toll-like receptor 4. Biochem Biophys Res Commun 2018;505:677-684. https://doi.org/10.1016/j.bbrc.2018.09.165
  10. Zhang J, Wu Y. MicroRNA-182-5p alleviates spinal cord injury by inhibiting inflammation and apoptosis through modulating the TLR4/NF-κB pathway. Int J Clin Exp Pathol 2018;11:2948-2958.
  11. Zhu M, Li Y, Sun K. MicroRNA-182-5p inhibits inflammation in LPS-treated RAW264.7 cells by mediating the TLR4/NF-κB signaling pathway. Int J Clin Exp Pathol 2018;11:5725-5734. 
  12. Jiang W, Liu G, Tang W. Microrna-182-5p ameliorates liver ischemia-reperfusion injury by suppressing toll-like receptor 4. Transplant Proc 2016;48:2809-2814. https://doi.org/10.1016/j.transproceed.2016.06.043
  13. Muller P, Lemcke H, David R. Stem cell therapy in heart diseases - cell types, mechanisms and improvement strategies. Cell Physiol Biochem 2018;48:2607-2655. https://doi.org/10.1159/000492704
  14. Psatha N, Karponi G, Yannaki E. Optimizing autologous cell grafts to improve stem cell gene therapy. Exp Hematol 2016;44:528-539. https://doi.org/10.1016/j.exphem.2016.04.007
  15. Fu DL, Jiang H, Li CY, Gao T, Liu MR, Li HW. MicroRNA-338 in MSCs-derived exosomes inhibits cardiomyocyte apoptosis in myocardial infarction. Eur Rev Med Pharmacol Sci 2020;24:10107-10117.
  16. Yuan MJ, Maghsoudi T, Wang T. Exosomes mediate the intercellular communication after myocardial infarction. Int J Med Sci 2016;13:113-116. https://doi.org/10.7150/ijms.14112
  17. Gallet R, Dawkins J, Valle J, Simsolo E, de Couto G, Middleton R, Tseliou E, Luthringer D, Kreke M, Smith RR, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J 2017;38:201-211.
  18. Song Y, Wang B, Zhu X, Hu J, Sun J, Xuan J, Ge Z. Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol Toxicol 2021;37:51-64. https://doi.org/10.1007/s10565-020-09530-8
  19. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015;13:17-24. https://doi.org/10.1016/j.gpb.2015.02.001
  20. Li Y, Zhou J, Zhang O, Wu X, Guan X, Xue Y, Li S, Zhuang X, Zhou B, Miao G, et al. Bone marrow mesenchymal stem cells-derived exosomal microRNA-185 represses ventricular remolding of mice with myocardial infarction by inhibiting SOCS2. Int Immunopharmacol 2020;80:106156.
  21. Zhu H, Guo ZK, Jiang XX, Li H, Wang XY, Yao HY, Zhang Y, Mao N. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 2010;5:550-560. https://doi.org/10.1038/nprot.2009.238
  22. Jin J, Cheng S, Wang Y, Wang T, Zeng D, Li Z, Li X, Wang J. SRC3 expressed in bone marrow mesenchymal stem cells promotes the development of multiple myeloma. Acta Biochim Biophys Sin (Shanghai) 2019;51:1258-1266. https://doi.org/10.1093/abbs/gmz130
  23. Wu Z, Cheng S, Wang S, Li W, Liu J. BMSCs-derived exosomal microRNA-150-5p attenuates myocardial infarction in mice. Int Immunopharmacol 2021;93:107389.
  24. Fan M, Chen Z, Huang Y, Xia Y, Chen A, Lu D, Wu Y, Zhang N, Zhang P, Li S, et al. Overexpression of the histidine triad nucleotide-binding protein 2 protects cardiac function in the adult mice after acute myocardial infarction. Acta Physiol (Oxf ) 2020;228:e13439.
  25. Wang K, Long B, Zhou LY, Liu F, Zhou QY, Liu CY, Fan YY, Li PF. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun 2014;5:3596.
  26. Zhang A, Jin Y. MicroRNA-182-5p relieves murine allergic rhinitis via TLR4/NF-κB pathway. Open Med (Wars) 2020;15:1202-1212. https://doi.org/10.1515/med-2020-0198
  27. Hu X, Xu Y, Zhong Z, Wu Y, Zhao J, Wang Y, Cheng H, Kong M, Zhang F, Chen Q, et al. A large-scale investigation of hypoxia-preconditioned allogeneic mesenchymal stem cells for myocardial repair in nonhuman primates: paracrine activity without remuscularization. Circ Res 2016;118:970-983. https://doi.org/10.1161/CIRCRESAHA.115.307516
  28. Ji ST, Kim H, Yun J, Chung JS, Kwon SM. Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering. Stem Cells Int 2017;2017:3945403.
  29. Guo Y, Yu Y, Hu S, Chen Y, Shen Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis 2020;11:349.
  30. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 2015;17:11-22. https://doi.org/10.1016/j.stem.2015.06.007
  31. Tan SJ, Floriano JF, Nicastro L, Emanueli C, Catapano F. Novel applications of mesenchymal stem cell-derived exosomes for myocardial infarction therapeutics. Biomolecules 2020;10:707.
  32. Adamiak M, Cheng G, Bobis-Wozowicz S, Zhao L, Kedracka-Krok S, Samanta A, Karnas E, Xuan YT, Skupien-Rabian B, Chen X, et al. Induced pluripotent stem cell (iPSC)-derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs. Circ Res 2018;122:296-309. https://doi.org/10.1161/CIRCRESAHA.117.311769
  33. Riazifar M, Pone EJ, Lotvall J, Zhao W. Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol 2017;57:125-154. https://doi.org/10.1146/annurev-pharmtox-061616-030146
  34. Davidson SM, Yellon DM. Exosomes and cardioprotection - a critical analysis. Mol Aspects Med 2018;60:104-114. https://doi.org/10.1016/j.mam.2017.11.004
  35. Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem 2015;37:2415-2424. https://doi.org/10.1159/000438594
  36. Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem 2017;43:52-68. https://doi.org/10.1159/000480317
  37. Bhome R, Del Vecchio F, Lee GH, Bullock MD, Primrose JN, Sayan AE, Mirnezami AH. Exosomal microRNAs (exomiRs): small molecules with a big role in cancer. Cancer Lett 2018;420:228-235. https://doi.org/10.1016/j.canlet.2018.02.002
  38. Frangogiannis NG. Inflammation in cardiac injury, repair and regeneration. Curr Opin Cardiol 2015;30:240-245. https://doi.org/10.1097/HCO.0000000000000158
  39. Chong AJ, Shimamoto A, Hampton CR, Takayama H, Spring DJ, Rothnie CL, Yada M, Pohlman TH, Verrier ED. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg 2004;128:170-179. https://doi.org/10.1016/j.jtcvs.2003.11.036