DOI QR코드

DOI QR Code

Amelioration of DSS-Induced Acute Colitis in Mice by Recombinant Monomeric Human Interleukin-22

  • Suhyun Kim (Department of Biochemistry, Kangwon National University) ;
  • Eun-Hye Hong (Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University) ;
  • Cheol-Ki Lee (Department of Biochemistry, Kangwon National University) ;
  • Yiseul Ryu (Institute of Life Sciences (ILS), Kangwon National University) ;
  • Hyunjin Jeong (Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University) ;
  • Seungnyeong Heo (Department of Biochemistry, Kangwon National University) ;
  • Joong-Jae Lee (Department of Biochemistry, Kangwon National University) ;
  • Hyun-Jeong Ko (Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University)
  • Received : 2021.11.15
  • Accepted : 2022.03.03
  • Published : 2022.06.30

Abstract

IL-22, a pleiotropic cytokine, is known to have a profound effect on the regeneration of damaged intestinal barriers. The tissue-protective properties of IL-22 are expected to be potentially exploited in the attenuation and treatment of colitis. However, because of the disease-promoting role of IL-22 in chronic inflammation, a comprehensive evaluation is required to translate IL-22 into the clinical domain. Here, we present the effective production of soluble human IL-22 in bacteria to prove whether recombinant IL-22 has the ability to ameliorate colitis and inflammation. IL-22 was expressed in the form of a biologically active monomer and non-functional oligomers. Monomeric IL-22 (mIL-22) was highly purified through a series of 3 separate chromatographic methods and an enzymatic reaction. We reveal that the resulting mIL-22 is correctly folded and is able to phosphorylate STAT3 in HT-29 cells. Subsequently, we demonstrate that mIL-22 enables the attenuation of dextran sodium sulfate-induced acute colitis in mice, as well as the suppression of pro-inflammatory cytokine production. Collectively, our results suggest that the recombinant mIL-22 is suitable to study the biological roles of endogenous IL-22 in immune responses and can be developed as a biological agent associated with inflammatory disorders.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea (2019R1I1A3A01047208, 2019R1I1A1A01058773, 2020R1A2B5B02001552, 2020R1A5A8019180, and 2020R1I1A1A01069947), and Kangwon National University (520190031).

References

  1. Ouyang W, O'Garra A. IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity 2019;50:871-891.  https://doi.org/10.1016/j.immuni.2019.03.020
  2. Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J, Wood WI, Goddard AD, Gurney AL. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 2000;275:31335-31339.  https://doi.org/10.1074/jbc.M005304200
  3. Logsdon NJ, Jones BC, Josephson K, Cook J, Walter MR. Comparison of interleukin-22 and interleukin-10 soluble receptor complexes. J Interferon Cytokine Res 2002;22:1099-1112.  https://doi.org/10.1089/10799900260442520
  4. Nagem RA, Colau D, Dumoutier L, Renauld JC, Ogata C, Polikarpov I. Crystal structure of recombinant human interleukin-22. Structure 2002;10:1051-1062.  https://doi.org/10.1016/S0969-2126(02)00797-9
  5. Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol 2015;33:747-785.  https://doi.org/10.1146/annurev-immunol-032414-112123
  6. Colonna M. Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity 2009;31:15-23.  https://doi.org/10.1016/j.immuni.2009.06.008
  7. Jones BC, Logsdon NJ, Walter MR. Structure of IL-22 bound to its high-affinity IL-22R1 chain. Structure 2008;16:1333-1344.  https://doi.org/10.1016/j.str.2008.06.005
  8. Parks OB, Pociask DA, Hodzic Z, Kolls JK, Good M. Interleukin-22 signaling in the regulation of intestinal health and disease. Front Cell Dev Biol 2016;3:85. 
  9. Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld JC. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem 2002;277:33676-33682.  https://doi.org/10.1074/jbc.M204204200
  10. Arshad T, Mansur F, Palek R, Manzoor S, Liska V. A double edged sword role of interleukin-22 in wound healing and tissue regeneration. Front Immunol 2020;11:2148. 
  11. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity 2004;21:241-254.  https://doi.org/10.1016/j.immuni.2004.07.007
  12. Lucke J, Sabihi M, Zhang T, Bauditz LF, Shiri AM, Giannou AD, Huber S. The good and the bad about separation anxiety: roles of IL-22 and IL-22BP in liver pathologies. Semin Immunopathol 2021;43:591-607.  https://doi.org/10.1007/s00281-021-00854-z
  13. Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov 2014;13:21-38.  https://doi.org/10.1038/nrd4176
  14. Arab JP, Sehrawat TS, Simonetto DA, Verma VK, Feng D, Tang T, Dreyer K, Yan X, Daley WL, Sanyal A, et al. An open-label, dose-escalation study to assess the safety and efficacy of IL-22 agonist F-652 in patients with alcohol-associated hepatitis. Hepatology 2020;72:441-453.  https://doi.org/10.1002/hep.31046
  15. Gao B, Xiang X. Interleukin-22 from bench to bedside: a promising drug for epithelial repair. Cell Mol Immunol 2019;16:666-667.  https://doi.org/10.1038/s41423-018-0055-6
  16. Mizoguchi A, Yano A, Himuro H, Ezaki Y, Sadanaga T, Mizoguchi E. Clinical importance of IL-22 cascade in IBD. J Gastroenterol 2018;53:465-474.  https://doi.org/10.1007/s00535-017-1401-7
  17. Wei HX, Wang B, Li B. IL-10 and IL-22 in mucosal immunity: driving protection and pathology. Front Immunol 2020;11:1315. 
  18. Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA, Jenq RR, Velardi E, Young LF, Smith OM, Lawrence G, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 2015;528:560-564. https://doi.org/10.1038/nature16460
  19. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, Blumberg RS, Xavier RJ, Mizoguchi A. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 2008;118:534-544.  https://doi.org/10.1172/JCI33194
  20. Pickert G, Neufert C, Leppkes M, Zheng Y, Wittkopf N, Warntjen M, Lehr HA, Hirth S, Weigmann B, Wirtz S, et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 2009;206:1465-1472.  https://doi.org/10.1084/jem.20082683
  21. Qiu Y, Jiang Z, Hu S, Wang L, Ma X, Yang X. Lactobacillus plantarum enhanced IL-22 production in natural killer (NK) cells that protect the integrity of intestinal epithelial cell barrier damaged by enterotoxigenic Escherichia coli. Int J Mol Sci 2017;18:2409. 
  22. Mizoguchi A. Healing of intestinal inflammation by IL-22. Inflamm Bowel Dis 2012;18:1777-1784.  https://doi.org/10.1002/ibd.22929
  23. Ray K. Stem cells: IL-22 activates ISCs for intestinal regeneration. Nat Rev Gastroenterol Hepatol 2016;13:64. 
  24. Saxton RA, Henneberg LT, Calafiore M, Su L, Jude KM, Hanash AM, Garcia KC. The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design. Immunity 2021;54:660-672.e9.  https://doi.org/10.1016/j.immuni.2021.03.008
  25. Mihi B, Gong Q, Nolan LS, Gale SE, Goree M, Hu E, Lanik WE, Rimer JM, Liu V, Parks OB, et al. Interleukin-22 signaling attenuates necrotizing enterocolitis by promoting epithelial cell regeneration. Cell Rep Med 2021;2:100320. 
  26. Yu L, Wang FJ, Cui YF, Li D, Yao WR, Yang GB. Molecular characteristics of rhesus macaque interleukin-22: cloning, in vitro expression and biological activities. Immunology 2018;154:651-662.  https://doi.org/10.1111/imm.12914
  27. Niv-Spector L, Shpilman M, Levi-Bober M, Katz M, Varol C, Elinav E, Gertler A. Preparation and characterization of mouse IL-22 and its four single-amino-acid muteins that act as IL-22 receptor-1 antagonists. Protein Eng Des Sel 2012;25:397-404.  https://doi.org/10.1093/protein/gzs030
  28. Feng Y, Zhang M, Zhang L, Zhang T, Ding J, Zhuang Y, Wang X, Yang Z. An automatic refolding apparatus for preparative-scale protein production. PLoS One 2012;7:e45891. 
  29. Kwon J, Cho H, Kim S, Ryu Y, Lee JJ. A combination strategy of solubility enhancers for effective production of soluble and bioactive human enterokinase. J Biotechnol 2021;340:57-63.  https://doi.org/10.1016/j.jbiotec.2021.09.002
  30. Zhang L, Chou CP, Moo-Young M. Disulfide bond formation and its impact on the biological activity and stability of recombinant therapeutic proteins produced by Escherichia coli expression system. Biotechnol Adv 2011;29:923-929.  https://doi.org/10.1016/j.biotechadv.2011.07.013
  31. Xu F, Li XY, Zhang JY, Xing RQ, Li JH, Fu Q. A rapid bioassay for recombinant interleukin-22. J Immunoassay Immunochem 2010;31:71-78.  https://doi.org/10.1080/15321810903405100
  32. de Oliveira Neto M, Ferreira JR Jr, Colau D, Fischer H, Nascimento AS, Craievich AF, Dumoutier L, Renauld JC, Polikarpov I. Interleukin-22 forms dimers that are recognized by two interleukin-22R1 receptor chains. Biophys J 2008;94:1754-1765.  https://doi.org/10.1529/biophysj.107.112664
  33. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 2014;5:172. 
  34. Arnau J, Lauritzen C, Petersen GE, Pedersen J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 2006;48:1-13.  https://doi.org/10.1016/j.pep.2005.12.002
  35. Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM, Diepolder H, Marquardt A, Jagla W, Popp A, et al. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 2006;290:G827-G838.  https://doi.org/10.1152/ajpgi.00513.2005
  36. Pithadia AB, Jain S. Treatment of inflammatory bowel disease (IBD). Pharmacol Rep 2011;63:629-642. https://doi.org/10.1016/S1734-1140(11)70575-8
  37. Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet 2017;389:1756-1770.  https://doi.org/10.1016/S0140-6736(16)32126-2
  38. Kane SV. Systematic review: adherence issues in the treatment of ulcerative colitis. Aliment Pharmacol Ther 2006;23:577-585.  https://doi.org/10.1111/j.1365-2036.2006.02809.x
  39. Collins P, Rhodes J. Ulcerative colitis: diagnosis and management. BMJ 2006;333:340-343.  https://doi.org/10.1136/bmj.333.7563.340
  40. Zenlea T, Peppercorn MA. Immunosuppressive therapies for inflammatory bowel disease. World J Gastroenterol 2014;20:3146-3152.  https://doi.org/10.3748/wjg.v20.i12.3146
  41. Keir M, Yi Y, Lu T, Ghilardi N. The role of IL-22 in intestinal health and disease. J Exp Med 2020;217:e20192195. 
  42. Zenewicz LA, Flavell RA. Recent advances in IL-22 biology. Int Immunol 2011;23:159-163.  https://doi.org/10.1093/intimm/dxr001
  43. Pelczar P, Witkowski M, Perez LG, Kempski J, Hammel AG, Brockmann L, Kleinschmidt D, Wende S, Haueis C, Bedke T, et al. A pathogenic role for T cell-derived IL-22BP in inflammatory bowel disease. Science 2016;354:358-362.  https://doi.org/10.1126/science.aah5903
  44. Pham TA, Clare S, Goulding D, Arasteh JM, Stares MD, Browne HP, Keane JA, Page AJ, Kumasaka N, Kane L, et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 2014;16:504-516.  https://doi.org/10.1016/j.chom.2014.08.017
  45. Cox JH, Kljavin NM, Ota N, Leonard J, Roose-Girma M, Diehl L, Ouyang W, Ghilardi N. Opposing consequences of IL-23 signaling mediated by innate and adaptive cells in chemically induced colitis in mice. Mucosal Immunol 2012;5:99-109.  https://doi.org/10.1038/mi.2011.54
  46. Stefanich EG, Rae J, Sukumaran S, Lutman J, Lekkerkerker A, Ouyang W, Wang X, Lee D, Danilenko DM, Diehl L, et al. Pre-clinical and translational pharmacology of a human interleukin-22 IgG fusion protein for potential treatment of infectious or inflammatory diseases. Biochem Pharmacol 2018;152:224-235.  https://doi.org/10.1016/j.bcp.2018.03.031
  47. Eken A, Singh AK, Treuting PM, Oukka M. IL-23R+ innate lymphoid cells induce colitis via interleukin-22-dependent mechanism. Mucosal Immunol 2014;7:143-154.  https://doi.org/10.1038/mi.2013.33
  48. Rothenberg ME, Wang Y, Lekkerkerker A, Danilenko DM, Maciuca R, Erickson R, Herman A, Stefanich E, Lu TT. Randomized phase I healthy volunteer study of UTTR1147A (IL-22Fc): a potential therapy for epithelial injury. Clin Pharmacol Ther 2019;105:177-189.  https://doi.org/10.1002/cpt.1164
  49. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 2008;29:947-957.  https://doi.org/10.1016/j.immuni.2008.11.003
  50. Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, Biancone L, MacDonald TT, Pallone F, Monteleone G. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 2011;141:237-248.  https://doi.org/10.1053/j.gastro.2011.04.007
  51. Zindl CL, Lai JF, Lee YK, Maynard CL, Harbour SN, Ouyang W, Chaplin DD, Weaver CT. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc Natl Acad Sci U S A 2013;110:12768-12773.  https://doi.org/10.1073/pnas.1300318110
  52. Tsai PY, Zhang B, He WQ, Zha JM, Odenwald MA, Singh G, Tamura A, Shen L, Sailer A, Yeruva S, et al. IL-22 upregulates epithelial claudin-2 to drive diarrhea and enteric pathogen clearance. Cell Host Microbe 2017;21:671-681.e4.  https://doi.org/10.1016/j.chom.2017.05.009
  53. Zhang X, Liu S, Wang Y, Hu H, Li L, Wu Y, Cao D, Cai Y, Zhang J, Zhang X. Interleukin-22 regulates the homeostasis of the intestinal epithelium during inflammation. Int J Mol Med 2019;43:1657-1668.  https://doi.org/10.3892/ijmm.2019.4092
  54. Powell N, Pantazi E, Pavlidis P, Tsakmaki A, Li K, Yang F, Parker A, Pin C, Cozzetto D, Minns D, et al. Interleukin-22 orchestrates a pathological endoplasmic reticulum stress response transcriptional programme in colonic epithelial cells. Gut 2020;69:578-590. https://doi.org/10.1136/gutjnl-2019-318483
  55. Wu T, Cui L, Liang Z, Liu C, Liu Y, Li J. Elevated serum IL-22 levels correlate with chemoresistant condition of colorectal cancer. Clin Immunol 2013;147:38-39.  https://doi.org/10.1016/j.clim.2013.02.007
  56. Ma HL, Liang S, Li J, Napierata L, Brown T, Benoit S, Senices M, Gill D, Dunussi-Joannopoulos K, Collins M, et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest 2008;118:597-607.  https://doi.org/10.1172/JCI33263
  57. Shohan M, Dehghani R, Khodadadi A, Dehnavi S, Ahmadi R, Joudaki N, Houshmandfar S, Shamshiri M, Shojapourian S, Bagheri N. Interleukin-22 and intestinal homeostasis: protective or destructive? IUBMB Life 2020;72:1585-1602.  https://doi.org/10.1002/iub.2295
  58. Kim K, Kim G, Kim JY, Yun HJ, Lim SC, Choi HS. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis 2014;35:1352-1361.  https://doi.org/10.1093/carcin/bgu044
  59. Zhang Y, Liu C, Gao J, Shao S, Cui Y, Yin S, Pan B. IL-22 promotes tumor growth of breast cancer cells in mice. Aging (Albany NY) 2020;12:13354-13364.  https://doi.org/10.18632/aging.103439
  60. Loera-Arias MJ, Villatoro-Hernandez J, Parga-Castillo MA, Salcido-Montenegro A, Barboza-Quintana O, Munoz-Maldonado GE, Montes-de-Oca-Luna R, Saucedo-Cardenas O. Secretion of biologically active human interleukin 22 (IL-22) by Lactococcus lactis. Biotechnol Lett 2014;36:2489-2494.  https://doi.org/10.1007/s10529-014-1626-y
  61. de Moura PR, Watanabe L, Bleicher L, Colau D, Dumoutier L, Lemaire MM, Renauld JC, Polikarpov I. Crystal structure of a soluble decoy receptor IL-22BP bound to interleukin-22. FEBS Lett 2009;583:1072-1077. https://doi.org/10.1016/j.febslet.2009.03.006