DOI QR코드

DOI QR Code

IL-34 Aggravates Steroid-Induced Osteonecrosis of the Femoral Head via Promoting Osteoclast Differentiation

  • Feng Wang (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Hong Sung Min (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Haojie Shan (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Fuli Yin (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Chaolai Jiang (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Yang Zong (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Xin Ma (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Yiwei Lin (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Zubin Zhou (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Xiaowei Yu (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital)
  • 투고 : 2021.12.07
  • 심사 : 2022.02.23
  • 발행 : 2022.06.30

초록

IL-34 can promote osteoclast differentiation and activation, which may contribute to steroid-induced osteonecrosis of the femoral head (ONFH). Animal model was constructed in both BALB/c and IL-34 deficient mice to detect the relative expression of inflammation cytokines. Micro-CT was utilized to reveal the internal structure. In vitro differentiated osteoclast was induced by culturing bone marrow-derived macrophages with IL-34 conditioned medium or M-CSF. The relative expression of pro-inflammation cytokines, osteoclast marker genes, and relevant pathways molecules was detected with quantitative real-time RT-PCR, ELISA, and Western blot. Up-regulated IL-34 expression could be detected in the serum of ONFH patients and femoral heads of ONFH mice. IL-34 deficient mice showed the resistance to ONFH induction with the up-regulated trabecular number, trabecular thickness, bone value fraction, and down-regulated trabecular separation. On the other hand, inflammatory cytokines, such as TNF-α, IFN-γ, IL-6, IL-12, IL-2, and IL-17A, showed diminished expression in IL-34 deficient ONFH induced mice. IL-34 alone or works in coordination with M-CSF to promote osteoclastogenesis and activate ERK, STAT3, and non-canonical NF-κB pathways. These data demonstrate that IL-34 can promote the differentiation of osteoclast through ERK, STAT3, and non-canonical NF-κB pathways to aggravate steroid-induced ONFH, and IL-34 can be considered as a treatment target.

키워드

과제정보

This work was funded by the National Natural Science Foundation of China (81873993); the Clinical Science and Technology Innovation Project of Shanghai Hospital Development Center (SHDC12019X24), and the Shanghai Pudong New Area Science and Technology Development Fund (PKJ2019-Y02).

참고문헌

  1. Chang C, Greenspan A, Gershwin ME. The pathogenesis, diagnosis and clinical manifestations of steroid-induced osteonecrosis. J Autoimmun 2020;110:102460.
  2. Krez A, Lane J, Heilbronner A, Park-Min KH, Kaneko K, Pannellini T, Mintz D, Hansen D, McMahon DJ, Kirou KA, et al. Risk factors for multi-joint disease in patients with glucocorticoid-induced osteonecrosis. Osteoporos Int 2021;32:2095-2103. https://doi.org/10.1007/s00198-021-05947-x
  3. Musso ES, Mitchell SN, Schink-Ascani M, Bassett CA. Results of conservative management of osteonecrosis of the femoral head. A retrospective review. Clin Orthop Relat Res 1986:209-215.
  4. Chen K, Liu Y, He J, Pavlos N, Wang C, Kenny J, Yuan J, Zhang Q, Xu J, He W. Steroid-induced osteonecrosis of the femoral head reveals enhanced reactive oxygen species and hyperactive osteoclasts. Int J Biol Sci 2020;16:1888-1900. https://doi.org/10.7150/ijbs.40917
  5. Guggenbuhl P, Robin F, Cadiou S, Albert JD. Etiology of avascular osteonecrosis of the femoral head. Morphologie 2021;105:80-84. https://doi.org/10.1016/j.morpho.2020.12.002
  6. Yoon BH, Mont MA, Koo KH, Chen CH, Cheng EY, Cui Q, Drescher W, Gangji V, Goodman SB, Ha YC, et al. The 2019 revised version of association research circulation osseous staging system of osteonecrosis of the femoral head. J Arthroplasty 2020;35:933-940. https://doi.org/10.1016/j.arth.2019.11.029
  7. Wen Z, Lin Z, Yan W, Zhang J. Influence of cigarette smoking on osteonecrosis of the femoral head (ONFH): a systematic review and meta-analysis. Hip Int 2017;27:425-435. https://doi.org/10.5301/hipint.5000516
  8. Wang A, Ren M, Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: a systematic review of the literature. Gene 2018;671:103-109. https://doi.org/10.1016/j.gene.2018.05.091
  9. Okazaki S, Nagoya S, Yamamoto M, Tateda K, Takahashi H, Yamashita T, Matsumoto H. High risk of osteonecrosis of the femoral head in autoimmune disease patients showing no immediate increase in hepatic enzyme under steroid therapy. Rheumatol Int 2013;33:51-55. https://doi.org/10.1007/s00296-011-2295-y
  10. Zhao R, Wang H, Wang X, Feng F. Steroid therapy and the risk of osteonecrosis in SARS patients: a dose-response meta-analysis. Osteoporos Int 2017;28:1027-1034. https://doi.org/10.1007/s00198-016-3824-z
  11. Wang M, Min HS, Shan H, Lin Y, Xia W, Yin F, Jiang C, Yu X. Bone morphogenetic protein 2 controls steroid-induced osteonecrosis of the femoral head via directly inhibiting interleukin-34 expression. J Mol Endocrinol 2021;68:1-9.
  12. Luo P, Gao F, Han J, Sun W, Li Z. The role of autophagy in steroid necrosis of the femoral head: a comprehensive research review. Int Orthop 2018;42:1747-1753. https://doi.org/10.1007/s00264-018-3994-8
  13. Fu D, Qin K, Yang S, Lu J, Lian H, Zhao D. Proper mechanical stress promotes femoral head recovery from steroid-induced osteonecrosis in rats through the OPG/RANK/RANKL system. BMC Musculoskelet Disord 2020;21:281.
  14. Petek D, Hannouche D, Suva D. Osteonecrosis of the femoral head: pathophysiology and current concepts of treatment. EFORT Open Rev 2019;4:85-97. https://doi.org/10.1302/2058-5241.4.180036
  15. He MC, Zhang J, Chen XJ, Shen YS, Fang B, Qin YX, He W, Wei QS. Osteoclastic activity was associated with the development of steroid-induced osteonecrosis of femoral head. Artif Cells Nanomed Biotechnol 2020;48:1036-1046. https://doi.org/10.1080/21691401.2020.1774596
  16. Baghdadi M, Ishikawa K, Nakanishi S, Murata T, Umeyama Y, Kobayashi T, Kameda Y, Endo H, Wada H, Bogen B, et al. A role for IL-34 in osteolytic disease of multiple myeloma. Blood Adv 2019;3:541-551. https://doi.org/10.1182/bloodadvances.2018020008
  17. Poudel M, Kim G, Bhattarai PY, Kim JY, Choi HS. Interleukin-34-csf1r signaling axis promotes epithelial cell transformation and breast tumorigenesis. Int J Mol Sci 2021;22:2711.
  18. Zou D, Zhang K, Yang Y, Ren Y, Zhang L, Xiao X, Zhang H, Liu S, Li J. Th17 and IL-17 exhibit higher levels in osteonecrosis of the femoral head and have a positive correlation with severity of pain. Endokrynol Pol 2018;69:283-290. https://doi.org/10.5603/EP.a2018.0031
  19. Zheng Y, Zheng Z, Zhang K, Zhu P. Osteonecrosis in systemic lupus erythematosus: Systematic insight from the epidemiology, pathogenesis, diagnosis and management. Autoimmun Rev 2022;21:102992.
  20. Liu Y, Shan H, Zong Y, Lin Y, Xia W, Wang N, Zhou L, Gao Y, Ma X, Jiang C, et al. IKKe in osteoclast inhibits the progression of methylprednisolone-induced osteonecrosis. Int J Biol Sci 2021;17:1353-1360. https://doi.org/10.7150/ijbs.57962
  21. Wang J, Wang B, Lv X, Wang L. Nik inhibitor impairs chronic periodontitis via suppressing non-canonical NF-κB and osteoclastogenesis. Pathog Dis 2020;78:ftaa045.
  22. Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021;110:771-796. https://doi.org/10.1002/JLB.3RU1120-773R
  23. Foucher ED, Blanchard S, Preisser L, Descamps P, Ifrah N, Delneste Y, Jeannin P. IL-34- and M-CSF-induced macrophages switch memory T cells into Th17 cells via membrane IL-1α. Eur J Immunol 2015;45:1092-1102. https://doi.org/10.1002/eji.201444606
  24. Ge Y, Huang M, Zhu XM, Yao YM. Biological functions and clinical implications of interleukin-34 in inflammatory diseases. Adv Protein Chem Struct Biol 2020;119:39-63. https://doi.org/10.1016/bs.apcsb.2019.02.003
  25. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 2008;320:807-811.
  26. Munoz-Garcia J, Cochonneau D, Teletchea S, Moranton E, Lanoe D, Brion R, Lezot F, Heymann MF, Heymann D. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics 2021;11:1568-1593. https://doi.org/10.7150/thno.50683
  27. Lelios I, Cansever D, Utz SG, Mildenberger W, Stifter SA, Greter M. Emerging roles of IL-34 in health and disease. J Exp Med 2020;217:e20190290.
  28. Mun SH, Park PS, Park-Min KH. The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 2020;52:1239-1254. https://doi.org/10.1038/s12276-020-0484-z
  29. Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 2014;6:a021857.
  30. Li X, Lei Y, Gao Z, Zhang B, Xia L, Lu J, Shen H. Effect of IL-34 on T helper 17 cell proliferation and IL-17 secretion by peripheral blood mononuclear cells from rheumatoid arthritis patients. Sci Rep 2020;10:22239.
  31. Baghdadi M, Endo H, Tanaka Y, Wada H, Seino KI. Interleukin 34, from pathogenesis to clinical applications. Cytokine 2017;99:139-147. https://doi.org/10.1016/j.cyto.2017.08.020