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ABSTRACT

The gastrointestinal tract is the first organ directly affected by fasting. However, little is 
known about how fasting influences the intestinal immune system. Intestinal dendritic 
cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive 
immune responses. We evaluated the changes of intestinal DCs in mice with short-term 
fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting 
induced an increased number of CD103+CD11b− DCs in both small intestinal lamina 
propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b− DCs showed 
proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine 
receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction 
in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared 
to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM 
infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and 
Aldh1a2 expression in CD103+CD11b− DCs in mice infected with LM might affect to increase 
of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103− may 
induce the increase of IFN-γ–producing cells with forming Th1-biased environment. 
Therefore, the short-term fasting affects protection against LM infection by changing major 
subset of intestinal DCs from tolerogenic to Th1 immunogenic.
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INTRODUCTION

Periodic fasting extends the lifespan of bacteria, yeast, worms, and mice compared to an 
ad libitum diet (1). Intermittent fasting protects mice from infectious and non-infectious 
diseases such as diabetes, cancer, and neurodegeneration (2). For instance, mice fasting for 
24–72 h before Listeria monocytogenes (LM) infection showed a reduced bacterial burden and 
prolonged survival (3). Furthermore, fasting increased the survival rate after kidney and liver 
transplantation and ischemia-reperfusion injury in mice (4).

Even short-term nutritional depletion (i.e., 24 h) reduces the total number of cells in the bone 
marrow and thymus (5). Because the gastrointestinal tract is the first organ directly affected 
by fasting, proteins related to metabolism are decreased, and protein synthesis is reduced 
after fasting for 24 h. Interestingly, however, proteins involved in cellular protection such as 
preservation of intestinal integrity were significantly increased (6). Also, nutritional depletion 
alters hormone levels and immune cell function (7). For example, leptin promoted expansion 
of naïve T cells in an IL-2–dependent manner and switched from Th2 to Th1 responses (8,9). 
Leptin also promoted dendritic cell (DC) maturation by inducing co-stimulatory molecules, 
proinflammatory cytokines (10), and migration to inflamed tissues (11).

To provoke an adaptive immune response, activation of and antigen presentation by 
professional antigen-presenting cells (APCs) is required. DCs survey and capture antigen 
at the local site and deliver it to the draining secondary lymphoid organ for naïve T-cell 
priming (12). DCs have heterogenic subsets depending on their state of activation, tissue, 
and differentiation lineage (13). In the gastrointestinal tract, especially in the small intestinal 
lamina propria (SILP), DCs can be classified based on the expression of CD103 (14). CD103+ 
DCs in SILP capture antigens, including apoptotic epithelial cells (15) and bacterial antigens 
(16), and migrate to the mesenteric lymph node (mLN) in a C-C chemokine receptor type 
7 (CCR7)-dependent manner (17). Moreover, together with TGF-β (18,19) and retinoic acid 
(RA) (20), they induce Treg differentiation. CD103+ DCs can be divided into several subtypes 
depending on their CD11b or CD8α expression. CD103+CD11b−CD8α+ DCs are specialized 
for cross-presentation of cell-associated antigens and priming of CD8+ T cells (21). Also, in 
Batf3-/- mice which lack intestinal CD103+CD11b- DCs, there was no evidence of spontaneous 
gastrointestinal inflammation (22). So, CD103+CD11b+ DCs have been postulated to play a 
role for immune tolerance in the intestine; however, paradoxically, it has been reported that 
those cells induce a Th1 and Th17 response under inflammatory conditions (23,24). Likewise, 
a minor population of intestinal CD103−CD11b+ DCs prime naïve CD4+ T cells and induce 
differentiation to IL-17– or IFN-γ–producing effector CD4+ T cells (25).

The primary function of the small intestine is digestion and absorption of nutrients. Upon 
fasting, there are structural and functional changes and reduced metabolic activities (26). 
Although the effect of fasting on intestinal epithelial cells has been documented, its impact 
on intestinal immune cells, DCs in particular, is unclear. We evaluated the changes in CD103+ 
DCs in gut-associated lymphoid organs (such as mLN and SILP) caused by short-term fasting 
and investigated the immune context induced by these changes in mice infected with LM.
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MATERIALS AND METHODS

Animals and short-term fasting
Female BALB/c mice, 6 weeks old, were purchased from Orient Bio Inc., South Korea. Mice 
were divided into two groups, one fed ad libitum and the other fasted for 24 h with water 
provided. To prevent the mice from eating their own feces during starvation, they were 
transferred to new bedding cages when fasting started. The experimental procedures were 
approved by the Institutional Animal Care and Use Committee of Seoul National University 
(SNU-130510-4-1). Animal experiments were carried out in compliance with the ARRIVE 
guidelines.

Bacteria preparation and infection
Recombinant LM expressing ovalbumin (LM-OVA) and the parental 1043S strain were 
provided by Dr. Hao Shen (University of Pennsylvania, Philadelphia, PA, USA). Bacteria 
cultured in brain heart infusion medium for 8 h at 140 rpm on a shaking incubator at 30°C 
were harvested by centrifugation and thoroughly washed twice with PBS. Bacteria were 
enumerated by measuring the optical density at 600 nm (27). The number of bacteria 
administered to the mice was validated by colony forming units (CFUs) counting by serial 
dilution and plating. For infection in vivo, 1×108 CFU of LM-OVA in 200 µL of PBS were 
administered intragastrically after fasting for 24 h (28).

Enumeration of bacteria
The spleen, liver, and mLNs were removed after perfusion with PBS. Each organ was 
homogenized in PBS with 0.1% Triton x-100. To enumerate Listeria, at least 200 µl of blood 
were collected by eye-bleeding and centrifuged at 6,300×g for 10 min to separate serum. Serial 
dilutions were plated on brain heart infusion agar for 12 to 16 h at 37°C and CFUs were counted.

SILP cell isolation
The small intestine, fat, connective tissues, and Peyer’s patches were removed, cut 
longitudinally, and washed in cold PBS. The organs were cut into 1-cm pieces and transferred 
to flasks containing 20 ml of digestion solution comprising 1× Hank’s balanced salt solution 
without Ca2+ or Mg2+ (Sigma-Aldrich, St. Louis, MO, USA), 5% fetal bovine serum (FBS; 
Gendepot, Barker, TX, USA), 1 mM DL-dithiothreitol (Sigma-Aldrich), and 2 mM EDTA 
(Sigma-Aldrich). Tissues were dissociated by gentle stirring for 20 min at 37°C and the 
supernatant was discarded. The SILP fractions were chopped using scissors and digested 
by stirring in RPMI-1640 medium containing 2% FBS, 0.5 mg/mL collagenase VIII (Sigma-
Aldrich), and 40 µg/ml DNase I (Roche, Indianapolis, IN, USA) for 30 min at 37°C. Lamina 
propria suspensions were passed through a 70-µm filter and washed with RPMI-1640.

In vivo proliferation assay
During short-term fasting, mice were injected intraperitoneally with 1 mg of BrdU in distilled 
PBS. After 12 h, single cells were prepared from the SILP and mLN. After surface staining 
with fluorochrome-conjugated antibodies, the cells were washed thoroughly. Then, the cells 
were fixed and permeabilized in 100 µl of Cytofix/Cytoperm buffer (BD Biosciences, San Jose, 
CA, USA) for 20 min at room temperature (RT) and washed with BD perm/wash buffer (BD 
Biosciences). Cells were suspended in 100 µl of BD perm/wash buffer plus (BD Biosciences) 
and incubated for 10 min at 4°C in the dark. Next, the cells were washed with BD perm/wash 
buffer and centrifuged. After fixation in 100 µl of buffer, 1×106 cells were incubated in DNase 
reaction solution for 1 h at 37°C. The cells were suspended in 50 µl of BD perm/wash buffer 
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containing fluorescent anti-BrdU-FITC. The cells were incubated for 20 min at RT, washed 
with BD perm/wash buffer, and subjected to flow cytometry analysis.

Flow cytometry, intracellular staining, and Foxp3 staining
For cell surface staining, anti-CD11c FITC (HL3), -CD11b PE-Cy7 (M1/70), -CD103 BV421 
(M290) or APC (2E7), -CD8a BV421 (53-6.7) or V450 (53-6.7), -I-Ad APC (AM5-32.1), -CD25 
PE-Cy7 (PC61), -CD62L BV605 or APC-Cy7 (MEL-14), -CD3e FITC (145-2C11), -PD-L1 PE (J43), 
-CD80 PE (16-10A1), -CD86 PE (GL1), -NK1.1 (PK136) -CD44 APC-Cy7 (1M7), and -CD45 APC 
(30-F11) fluorochrome-conjugated antibodies were purchased from BD Biosciences. Mouse 
anti-CD69 PerCP-Cy5.5 (H1.2F3), -F4/80 APC (BM8), -Ly6G BV421 (1A8), -CD11b BV605 
(M1/70), -CD4 BV605 (RM 4-5), and -CCR7 Alexa647 (4B12) monoclonal antibodies were 
purchased from BioLegend (San Diego, CA, USA). The cells were stained with the appropriate 
antibodies and incubated for 20 min at 4°C in the dark.

For intracellular staining, isolated single cells were stimulated with phorbol 12-myristate 
13-acetate (20 ng/ml) and ionomycin (200 ng/ml) in the presence of 3 µl/ml Brefeldin A 
(BD Biosciences) and incubated for 5 h at 37°C. Next, cells were stained with anti-IFNγ-PE 
(XMG1.2) and -IL-17A-PerCP-Cy5.5 (TC11-18H10) antibodies (BD Biosciences) for 20 min at 
4°C in the dark.

For Foxp3 intracellular staining, cells were incubated with anti-Foxp3 Alexa647 antibody 
(MF23) (BD Biosciences) for 20 min at RT in the dark. Next, flow cytometry was performed 
using a FACS Canto II (BD Biosciences) and analyzed by FlowJo software (Ashland, OR, USA). 
Cell sorting was performed using a FACS Aria (BD Biosciences). For all staining protocols, 
cells were analyzed by staining with live/dead discriminating dye (Tonbo Biosciences, CA, 
USA); dead cells were excluded.

Real-time quantitative PCR
cDNA was subjected to real-time quantitative PCR using Power SYBR Green PCR Master 
Mix (Applied Biosystems, Warrington, UK). The primers were gm-csf: forward 5′-CTG CCT 
TAA AGG GAC CAA GAG A-3′, reverse 5′-TTC CGC TGT CCA AGC TGA GT-3′; foxp3: forward 
5′-GGA TGA GCT GAC TGC AAT TCT G-3′, reverse 5′-GTA CCT AGC TGC CCT GCA TGA-3′; 
gata3: forward 5′-GCC TCG GCC ATT CGT ACA T-3′, reverse 5′-GTA GCC CTG ACG GAG 
TTT C-3′; t-bet: forward 5′-TCG TGG AGG TGA ATG ATG GA-3′, reverse 5′-GA GTG ATC TCT 
GCG TTC TGG TA-3′; aldh1a2: forward 5′-TTG GCT TAC GGG AGT ATT CAG AA-3′, reverse 
5′-GCC TCG GCC TCT TAG GAG TT-3′; tgfb1: forward 5′-TCG ACA TGG AGC TGG TGA 
AA-3′, reverse 5′-GAG CCT TAG TTT GGA CAG GAT CTG-3′; and tgfb2: forward 5′-GCC CCT 
GCT GTA CCT TCG T-3′, reverse 5′-TGC CAT CAA TAC CTG CAA ATC T-3′. Thirty PCR cycles 
were performed in duplicate for each primer. Relative quantification was performed using the 
ΔΔCt method and normalized to expression of the housekeeping gene gapdh: forward 5′-CTC 
CAC TCA CGG CAA ATT CA-3′, reverse 5′-GCC TCA CCC CAT TTG ATG TT-3′.

Statistical analysis
The mean value ± standard deviation was determined for each group. For comparison of 
means, the two-tailed unpaired Student’s t-test was used. Differences were considered 
significant at p<0.05 unless otherwise specified.
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RESULTS

CD11chi DCs were increased in the mLN and SILP of short-term-fasted mice
The gastrointestinal tract consumes much energy and so is directly affected by fasting (6), 
but little is known about the influence of fasting on gastrointestinal immunity. Therefore, we 
focused on changes in the intestinal immune system caused by short-term fasting. After 24 h of 
fasting, a significantly increased number of CD45+ leukocytes was observed in the mLN and SILP 
of fasted mice compared to ad libitum-fed mice (Fig. 1A). Next, we investigated the numbers of 
CD45+ DCs, neutrophils, macrophages, B cells, natural killer (NK) cells, and T cells. A significant 
increase in the number of CD11chi DCs was observed in the mLN and SILP compared to ad 
libitum-fed mice (Fig. 1B and Supplementary Fig. 1). In contrast, neutrophils, macrophages, NK 
cells, and lymphocyte populations (including B cells, CD4, CD8, and γδ T cells) in the mLN and 
SILP were not significantly changed (Supplementary Fig. 1 and Supplementary Fig. 2).
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Figure 1. Change of CD11chi cells in the SILP and mLN after short-term fasting. Mice were fasted for 24 h. (A) Absolute number of CD45+ leukocytes in the mLN 
and SILP. (B) Percentage and absolute number of CD45+F4/80−CD11chi DCs in the mLN and SILP. Unpaired Student’s t-test. Data are representative of two or three 
independent experiments, n=3–6 mice. 
*p<0.05; **p<0.01.
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Taken together, the results showed that short-term fasting leads to a significant increase in 
the population of intestinal CD11chi DCs, but not of other immune cell types.

CD103+ DCs were dramatically increased in mLN and SILP from short-term-
fasted mice
Intestinal CD11chi DCs can be categorized into several subsets based on their CD103 and 
CD11b expression (29). The majority of CD11chi DCs in the small intestine expresses the 
integrin αE referred to as CD103 paired with β7 (30). Furthermore, intestinal CD103+ DCs 
play an important role in maintaining tolerance to food antigens and commensal bacteria. 
In addition, immunological tolerance maintains intestinal homeostasis and suppresses 
unnecessary intestinal hyper-inflammation, which can occur even in normal individuals (14). 
To investigate the DC subsets increased by short-term fasting, we examined CD11chi DCs 
based on CD103 and CD11b expression. Intriguingly, the number of CD103+CD11b− DCs was 
significantly increased in the mLN of short-term-fasted mice (Fig. 2A and B). Furthermore, 
CD103+ DCs, but not CD103− DCs, in the SILP were significantly increased in short-term-
fasted mice compared to ad libitum-fed mice (Fig. 2C and D).

Collectively, these results indicate that the increased CD11chi DCs in short-term-fasted mice 
were mainly CD103+CD11b− DCs, but not CD103− DCs, in the mLN and SILP.
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CD103+ DCs proliferate in the SILP by GM-CSF
We hypothesized that the increased number of CD103+ DCs in the SILP was caused by 
local cell proliferation or migration or both. To investigate CD103+ DC proliferation, we 
performed a bromodeoxyuridine (BrdU) incorporation assay. Interestingly, BrdU uptake 
significantly increased in CD103+CD11b− and CD103+CD11b+ DCs in the SILP of short-term-
fasted mice compared to ad libitum-fed mice (Fig. 3A). Furthermore, BrdU uptake increased 
in CD103+CD11b− DCs in the mLN of short-term-fasted mice (Supplementary Fig. 3A). These 
results were correlated with the increased numbers of cell subsets in the SILP and mLN (Fig. 2).

GM-CSF is required for the development of DCs under steady-state and inflammatory 
conditions (31). GM-CSF also induces the development and expansion of conventional DCs 
(32) and facilitates the recruitment of intestinal DCs (33). Therefore, we evaluated the mRNA 
level of GM-CSF in the SILP. The expression of GM-CSF was significantly increased in the 
SILP after short-term fasting (Fig. 3B). To assess their migration capacity, expression of CCR7 
on CD103+ DCs in the SILP was examined (34). CCR7 expression was significantly increased 
in intestinal CD103+ DCs after short-term fasting compared to ad libitum-fed mice (Fig. 3C). In 
addition, other functional markers of DCs, such as major histocompatibility complex class II 
(MHC II), CD205, and PD-L1, were increased (Supplementary Fig. 3B).

Therefore, short-term fasting increased the number of DC subsets, largely CD103+CD11b− 
and CD103+CD11b+ DCs, in the SILP in correlation with increase of GM-CSF and CCR7 
expression, respectively.

Short-term fasting protects mice against LM infection
Next, we postulated that the increase in CD103+ DCs caused by short-term fasting modulates 
intestinal immunity because CD103+ DCs may be tolerogenic (14). To elucidate the role of 
CD103+ DCs in infection, mice were infected with LM, which induces Th1 and Th17 responses 
(35) and the bacterial burden was measured. The number of CFUs was significantly decreased 
in the spleen, mLN, and liver at 48 h post-infection (hpi) in short-term-fasted mice (Fig. 4A). 
In addition, high bacteremia was detected in mice fed ad libitum but not those on short-term 
fasting (Fig. 4B). Furthermore, and ruling out the possibility that short-term-fasted mice 
consumed food more rapidly after re-feeding, the number of CFUs in the stomach at 3 hpi 
was not different (Supplementary Fig. 4A).
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Next, we evaluated the effect of short-term fasting on survival. Consistent with the bacterial 
burden, the survival of short-term-fasted mice was increased compared to ad libitum-fed mice 
(Fig. 4C). Also, the body weight change of short-term-fasted mice infected with LM-OVA was 
comparable to that of the PBS group (Supplementary Fig. 4B).

Therefore, short-term fasting protects against gastrointestinal LM infection.

CD103+ DCs and Foxp3+ Tregs were increased in the mLN during early Listeria 
infection after short-term fasting
Next, we examined the role of the increased intestinal CD103+ DCs in LM-OVA infection in 
short-term fasting mice. CD103+CD11b− DCs are tolerogenic and mediate the differentiation 
of Foxp3+ Tregs by expressing anti-inflammatory cytokines and inhibitory surface molecules 
(14). Therefore, to investigate whether intestinal CD103+CD11b− DCs contribute to the 
induction of Foxp3+ Tregs during LM infection, CD103+CD11b− DCs and Foxp3+ Tregs were 
examined in LM-infected mice with/without fasting. CD103+CD11b− DCs were significantly 
increased in the mLN (Fig. 5A) and SILP (Fig. 5B) of short-term-fasted mice compared to 
ad libitum-fed mice. In the mLN, LM infection induced an increase in number of Foxp3+ 
Tregs in short-term-fasted and ad libitum-fed mice at 1 dpi; the magnitude of the increase 
was greater in the short-term-fasted mice (Fig. 5C top and D). CD103 is a marker of in vivo-
activated Foxp3+ Tregs (36-38). Therefore, to determine whether the increased Foxp3+ Tregs 
in short-term-fasted mice were functionally active, we examined their CD103 expression. The 
number of in vivo-activated CD103+Foxp3+ Tregs among Foxp3+ Tregs was higher in short-
term-fasted mice compared to ad libitum-fed mice (Fig. 5C bottom and E). By contrast, in the 
spleen, Foxp3+ Tregs were comparable in the two groups and their composition did not differ 
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(Supplementary Fig. 5). Also, the foxp3 mRNA level was threefold higher in short-term-fasted 
mice than in ad libitum-fed mice at 1 dpi (Fig. 5F left). The t-bet mRNA level was significantly 
upregulated in short-term-fasted mice compared to ad libitum-fed mice at 3 dpi (Fig. 5F right).

Collectively, these results suggest that the increased CD103+CD11b− DCs in short-term-fasted 
mice induced functional Foxp3+ Tregs upon LM infection, especially at the early stage.

Increased TGF-β and RA levels contributed to the tolerogenicity of CD103+ DCs
Next, to elucidate the factors responsible for the increase of Foxp3+ Tregs, we examined the 
cell surface molecules of CD103+ DCs. Increased PD-L1 and decreased CD86 and MHC II 
expression are phenotypic characteristics of tolerogenic DCs (39), and CD205+CD8α+ DCs 
producing TGF-β increase Foxp3+ Tregs (40). At 1 dpi, PD-L1, CD205, and CCR7 expression 
was significantly increased in CD103+ DCs of short-term-fasted mice compared to ad libitum-
fed mice, but CD86 and MHC II expression was unchanged (Fig. 6A).
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CD103+ DCs producing TGF-β, RA, and aldehyde dehydrogenase A2 (Aldh1a2) induce Foxp3+ 
Tregs (18,19). Therefore, we examined their expression in purified intestinal CD103+ DCs. 
Interestingly, the TGF-β2 and Aldh1a2 mRNA levels in intestinal CD103+ DCs were significantly 
increased in short-term-fasted mice compared to ad libitum-fed mice (Fig. 6B).

Taken together, the results suggested that increased TGF-β2, Aldh1a2, PD-L1, and CD205 
expression may contribute to the tolerogenicity of CD103+ DCs. Such tolerogenic CD103+ DCs may 
have a correlation with an increase of Foxp3+ Tregs in short-term-fasted mice infected with LM.

Short-term fasting upregulated the Th1 response in mice infected with LM
Next, we investigated the LM burden after 48 hpi. CD103− DCs preferentially induce the 
differentiation of naïve CD4+ T cells to IFN-γ–producing Th1 cells (25). Therefore, we expected 
that the number of CD103− DCs would increase after 2 dpi in short-term-fasted mice. At 3 
dpi, the percentage and absolute number of CD103−CD11b+ DCs were significantly increased 
in short-term-fasted mice compared to ad libitum-fed mice; by contrast, the percentage and 
absolute number of CD103+CD11b− DCs were reduced significantly (Fig. 7A). We further 
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investigated whether CD103− DCs promote a Th1 environment (25). The percentage and 
absolute number of IFN-γ+ cells among CD4+CD3+ (Fig. 7B), CD8+CD3+ (Fig. 7C), and 
NK1.1+CD3− (Supplementary Fig. 6) cells were increased at 2 and 3 dpi in short-term-fasted 
mice, in agreement with the increased t-bet expression at 3 dpi (Fig. 5F).

In summary, increased IFN-γ+ cells in short-term-fasted mice at the later phase of infection 
may be correlated with an increase of CD103- DCs in accordance with reduction of the 
bacterial burden by enhancing T cell–mediated immune responses.

DISCUSSION

We investigated the functional alterations of intestinal immune cells, especially CD11chi 
DCs, caused by short-term fasting with/without LM infection. The findings were as follows: 
short-term fasting altered the composition of intestinal innate immune cells, including an 
increase in CD11chi DCs; among CD11chi cells, CD103+ DCs in the mLN and SILP from short-
term-fasted mice proliferated more than those from ad libitum-fed mice; the expansion and 
migration of CD103+ DCs in the SILP after fasting was linked to upregulation of GM-CSF 
and CCR7, respectively; and short-term fasting significantly contributed for the protection 
in mice infected with LM through induction of Foxp3+ Tregs for regulating excessive 
immunopathology at the early phase and IFN-γ+ cells to deal with the infected cells at the 
later phase.

Unexpected immune responses may be provoked by fasting. For instance, fasting during 
anorexia enhances survival in mice with experimental autoimmune encephalomyelitis (41) 
or LM infection (42). By contrast, intermittent fasting suppresses antigen-specific antibody 
production after immunization with ovalbumin and cholera toxin (43). Fasting for 24 h 
altered the properties of intestinal immune cells, particularly DCs, protecting against LM 
infection. A fasting strategy to induce CD11chi DC subset alterations and the duration of 
protection against LM infection warrant further studies.

CD103+ DCs were the most increased DC subset in the mLN and SILP upon short-term 
fasting. The increase of CD103+CD11b− DCs in the SILP was a result of cell proliferation and 
migration. Also, the rate of proliferation was higher in the SILP than the mLN, as reported 
previously (44), showing that mLN CD103+ DCs proliferate more slowly than SILP CD103+ 
DCs. In addition, GM-CSF is essential for the development of CD103+ DCs, but not CD103− 
DCs, in non-lymphoid tissues, including the SILP (45). Indeed, the GM-CSF in the SILP was 
increased in short-term-fasted mice compared to ad libitum-fed mice, which may be linked to 
the increased number of intestinal CD103+ DCs. Flt3 ligand also plays an important role in 
the differentiation of hematopoietic stem cells into conventional DCs (cDCs) (46). In fact, 
Flt3 ligand maintains a normal number of cDCs by directly regulating their proliferation in 
the periphery (47). It was reported that absence of GM-CSFR in Csf2r-/- mice affects mostly 
the development of CD103+CD11b+ DCs in SILP, but not of CD103-CD11b+ DCs. Also, in Flt3-/- 
mice, the development of CD103+CD11b+ DCs in SILP was impaired, and CD103+CD11b- and 
CD103-CD11b+ DCs were significantly diminished in SILP (48). In addition, in the same 
context, it was reported that CX3CR1hi (CD103-CD11b+) DCs in SILP have poor responsiveness 
to Flt3 and GM-CSF (49), whereas CD103+ DCs in SILP responded stronger to Flt3, coincident 
with strong antigen-presentation ability (16). Therefore, although our results suggested a 
role for GM-CSF in the increased proliferation of CD103+ DC subsets in short-term-fasted 
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mice compared to ad libitum-fed mice, an investigation of the direct effect of Flt3 ligand with/
without GM-CSF on proliferation is needed.

It has been well reported that CCR7 plays an important role for migration of DCs (34). We 
showed CD103+ DCs in fasted mice express increased CCR7 compared to ad libitum-fed mice 
(Fig. 3C). So, we could have inferred that CD103+ DCs in fasted mice could have migrated better 
into mLN than those of ad libitum-fed mice, thus likely proliferated by increased GM-CSF.

Foxp3+ Tregs not only prevent autoimmune diseases (50,51), but also curb vigorous 
antimicrobial immune responses by restricting inflammation (52,53). We report a 
correlation between CD103+ DCs and Foxp3+ Tregs, and that short-term fasting protects 
mice against LM. During the early stage of infection, CD103+CD11b− DCs and Foxp3+ Tregs 
were significantly increased in short-term-fasted mice. Foxp3+ Tregs induced by CD103+ DCs 
prevent excessive immune responses to pathogens (18). It is important to note that CD103+ 
DCs can be classified into two distinct subsets based on the expression of CD11b. It has been 
demonstrated that lack of intestinal CD103+CD11b- DCs in Batf3-/- mice have no symptoms 
of spontaneous inflammation in the intestine. The authors postulated that CD103+CD11b+ 
DCs would play a role for maintaining intestinal homeostasis via regulating Tregs induction 
(22). Although this is a report contrary to what we propose in the present study, it is not yet 
known how short-term fasting affects the relationship between intestinal CD103+CD11b+ 
DC and induction of Tregs. It appears to be necessary, in future, to examine the cause and 
consequence of changes in the intestinal DC subsets when Batf3-/- mice are applied to the 
short-term fasting model.

We have suggested that the increase of Foxp3+ Tregs was a result of increased TGF-β2 expression 
in short-term-fasted mice. TGF-β promotes expansion of Foxp3+ Tregs in vivo (54). Therefore, 
the increase of Foxp3+ Tregs during early infection may be mediated by TGF-β. This should be 
verified by transferring Foxp3+ Tregs into TGF-β-deficient or DC-specific IRF8-deficient mice. 
Furthermore, Aldh1a2 expression was higher in CD103+ DCs from short-term-fasted mice, 
which might have caused the increase in Foxp3+ Tregs. RA is mainly produced by intestinal 
DCs and epithelial cells, and inhibition of RA receptor reduced the induction of Foxp3+ Tregs 
(55). Therefore, tolerogenic conditions in short-term-fasted mice might restrain the immune 
response and prevent tissue damage during the early phase of LM infection.

PD-L1 expression, together with CCR7 and CD205, was also significantly increased in short-
term-fasted mice infected with LM. PD-L1-expressing DCs function as tolerogenic DCs by 
inducing Foxp3+ Tregs (39,40). Therefore, we investigated the roles of CCR7 and CD205 in 
PD-L1-expressing DCs from short-term-fasted mice. CCR7 regulates migration of DCs from 
tissues to draining lymph nodes (34). CD205 is directly associated with antigen uptake and 
enhances antigen presentation by the MHC I and II pathways (56,57). It has been suggested 
that intestinal CD103+ DCs have better potential and ability to uptake non-invasive bacteria 
efficiently using intraepithelial dendrites (16). In addition, CD103+CD11b+ DCs have been 
reported to be the first DC subset to transport bacteria, Salmonella Typhimurium, to the mLN 
after oral infection (48). Collectively, our results suggested that the increased CD103+ DCs 
in short-term-fasted mice are migratory DCs maintaining intestinal tolerance, and can 
transport bacterial antigen the most firstly when the host infected.

CD103− DCs are more immunogenic than CD103+ DCs under steady state and infectious 
conditions and induce differentiation of naïve T cells into IFN-γ–producing Th1 cells (25) 
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and production of proinflammatory cytokines (18). However, the number of CD103− DCs 
was lower than that of CD103+ DCs, indicating maintenance of tolerance. Indeed, at the 
early stage (1 or 2 days) after bacterial infection, Foxp3+ Tregs are important for inducing a 
protective and non-pathogenic Th17 response and later maximizing the gut Th1 response 
(58). At 1 dpi, CD103+CD11b− DCs and Foxp3+ Tregs were increased in number in short-
term-fasted mice compared to ad libitum-fed mice. By contrast, the Th1 response at 3 dpi 
was increased in short-term-fasted mice infected with LM. Although it is still a controversy, 
CD103-CD11b+ DCs in mLN are known to be a subset derived from blood, not from intestine 
(25). So, we have thought reason that increase of CD103-CD11b+ DCs at 3 dpi is causing 
by the migration, not by subset switching from CD103+ into CD103-. However, the exact 
mechanisms on how short-term-fasted mice alter the major subset of DCs in intestine during 
bacterial infection should be followed up by further investigation.

Our results suggest that the changes of intestinal CD11chi DC subsets in short-term-fasted mice 
are critical for maintaining intestinal tolerance during early LM infection and later for forming 
a Th1-biased environment by increasing the number of CD103− DCs. It has been suggested that 
intestinal CD103-CD11b+ DCs induce differentiation of naïve CD4+ T cells into IFN-γ–producing 
Th1 cells (25). On the other hand, there is another intestinal DC subset, CD103+CD11b+XCR1+ 
DCs of which to differentiation of naive T cells into Th1 cells (59). The authors demonstrated that 
there was a significant decrease of intestinal T cell population, especially potential to produce 
IFN-γ, in mice when XCR1+ DCs were depleted. In addition, the mice lacking XCR1+ DCs showed 
more susceptible to DSS-induced colitis. Therefore, further investigation on the contribution of 
CD103+CD11b-XCR1+ DCs to the increase of IFN-γ producing cells would be meaningful.

In the context with induction of IFN-γ+ cells at 3 dpi, the present study showed that neutrophils 
were increased in short-term fasting mice infected with LM when compared to the ad libitum-fed 
mice (Supplementary Fig. 7). It could be that the increase of neutrophils may enhance bacterial 
clearance in LM infection. This is in agreement with the previous report that the infiltration 
of Ly6G+ neutrophils is critical for bacterial clearance and host survival (60). Based on these 
findings, we could suggest that establishment of Th1 environment in mice infected with LM by 
increased CD11b+ DCs is important for the protective immunity.

To examine the antigen-specific CD4+ and CD8+ T cells upon LM infection, it is usual to check 
IFN-γ production in intestinal CD4+ or CD8+ T cells at 7-8 dpi by re-stimulating with cognate 
epitope in vitro (61-63). However, unfortunately, in experimental condition of current study, 
we could not have checked antigen-specific IFN-γ producing CD4+ or CD8+ T cells because 
infected mice with ad libitum-fed (as the control group) were severely affected by infection 
and many are almost dead (Fig. 4B). Therefore, further works would be required to overcome 
the limitation of current study through finding even more perfect infection condition 
verifiable both unique effect of short-term fasting to intestinal DCs and surviving the mice for 
investigating antigen-specific T cell response.

Although we have suggested the effect of fasting to intestinal DC subsets only in the present 
study, it has been demonstrated that effect of mild or transient restriction of dietary intake is 
not limited to DCs, but can affect various immune cells, such as T cells, B cells, neutrophils, 
macrophages, and monocytes, to modulate immune responses (64). Furthermore, fasting 
could increase the resistance to colonization of Salmonella Typhimurium, thus reduce 
host inflammatory responses through suppressing NF-κB expression and downstream 
inflammatory mediators in whole cecal tissue lysates (65). Conversely, it has been reported 

https://doi.org/10.4110/in.2022.22.e16

Changes of Intestinal DCs in Short-Term-Fasted Mice



15/20https://immunenetwork.org

that fasting suppresses antigen-specific antibody production in the Ova-vaccination model 
and Ova-induced diarrhea model by inducing the migration of naïve B cells to the bone-
marrow in addition to the immune-enhancing effect (43). Therefore, further study that 
examines the comprehensive effect of fasting to modulate host immune responses from the 
perspective of changes in immune cells together with microbiome would be required.

In summary, short-term fasting influenced the characteristics of intestinal CD11chi DCs to 
balance tolerance and the immune response to LM infection. The balance was regulated 
by induction of intestinal CD103+CD11b− DCs and Foxp3+ Tregs during the early phase of 
infection, followed by induction of CD103−CD11b+ DCs with IFN-γ+ cells. These results 
provide insight into the influence of fasting on the innate immune system and could inform 
the development of strategies for oral prophylactic vaccination and treatment.
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SUPPLEMENTARY MATERIALS

Supplementary Figure 1
Gating strategy for flow cytometry analysis of immune cells. Single cells were prepared and 
pre-gated for single live CD45+ cells, and then specifically further gated for each cell type as 
displayed, respectively.

Click here to view

Supplementary Figure 2
Changes on the composition of CD45+ cells in mLN and SI LP from mice with short-term 
fasting. Mice were fasted for 24 h. Changes of neutrophils and macrophages (A), B cells and 
NK cells (B), and T cells (C) were examined. Statistical significance was examined by using 
unpaired Student’s t-test. The representative results from 2–3 independent experiments, 
n=3–6 mice.

Click here to view

Supplementary Figure 3
Increase of the CD11chi DC subsets in mice with short-term fasting. Mice were fasted for 24 
h. (A) BrdU uptake among CD45+F4/80-CD11chi DCs subsets were examined in mLN. (B) 
Expression of MHC II, CD86, CD205, and PD-L1 was examined in CD45+F4/80-CD11chiCD103+ 
DCs of SILP. Statistical significance was examined by using unpaired Student’s t-test. The 
representative results from 2–3 independent experiments, n=3–4 mice.

Click here to view
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Supplementary Figure 4
Bacterial burden in stomach and body weight change after short-term fasting in mice infected 
with LM. Mice were fasted for 24 h and then infected with LM. (A) CFU was measured in 
stomach at 3 hpi. (B) Body weight was monitored for 8 days. To note that the body weight 
of short-term fasting group was measured from day-1 because of the fasting. The statistics 
for body weight result was analyzed by log-rank (Mantel-Cox) test and all other statistical 
significance by unpaired Student’s t-test. The representative results from 2–3 independent 
experiments, n=5–6 mice.

Click here to view

Supplementary Figure 5
Induction of splenic Foxp3+ Tregs in mice with short-term fasting followed by LM infection. 
Mice were fasted for 24 h and then infected with LM. (A, B) Foxp3+ Tregs were analyzed 
in spleen at 1 dpi and shown in (A) dot plot and (B) percentage among CD3+CD4+ cells. 
Statistical significance was examined by using unpaired Student’s t-test. The representative 
results from 2–3 independent experiments, n=3-4 mice.

Click here to view

Supplementary Figure 6
Composition of IFN-γ+ cells among NK cells in short-term fasting mice infected with LM. 
Mice were fasted for 24 h and then infected with LM. The percentage and absolute number 
of IFN-γ+ cells among NK cells (NK1.1+CD3-NKp46+) in mLN at 1, 2 and 3 dpi. Statistical 
significance was examined by using unpaired Student’s t-test. The representative results from 
2–3 independent experiments, n=4–6 mice.

Click here to view

Supplementary Figure 7
Changes of neutrophils and macrophages in mice infected with LM. Mice were fasted for 24 h and 
then infected with LM. Percentage and absolute number of neutrophils and macrophages from 
SILP was examined at 3 dpi. Statistical significance was examined by using unpaired Student’s 
t-test. Results are representative of two or three independent experiments, n=4–6 mice.

Click here to view
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