Acknowledgement
This research was conducted as part of Syafiqa Pramunadipta's doctoral studies at Life Science Research Center, Gifu University as part of the "6-months Sandwich Program in UGSAS-GU 2019-2020" in research collaboration. The assistance of Mrs. Tomomi Katsu and Mrs. Ayako Usui are gratefully acknowledged. This research also funded by RTA UGM 2020.
References
- Datta, S., Choudhary, R. G., Shamim, M. and Dhar, V. 2011. Polymorphism in the internal transcribed spacer (ITS) region of the ribosomal DNA among different Fusarium species. Arch. Phytopathol. Plant Prot. 44:558-566. https://doi.org/10.1080/03235400903187402
- Diguta, C. F., Vincent, B., Guilloux-Benatier, M., Alexandre, H. and Rousseaux, S. 2011. PCR ITS-RFLP: a useful method for identifying filamentous fungi isolates on grapes. Food Microbiol. 28:1145-1154. https://doi.org/10.1016/j.fm.2011.03.006
- Hafez, M., Abdelmagid, A., Adam, L. R. and Daayf, F. 2020. Specific detection and identification of Fusarium graminearum sensu stricto using a PCR-RFLP tool and specific primers targeting the translational elongation factor 1α gene. Plant Dis. 104:1076-1086. https://doi.org/10.1094/pdis-03-19-0572-re
- Hong, S.-Y., Kang, M. R., Cho, E.-J., Kim, H.-K. and Yun, S.-H. 2010. Specific PCR detection of four quarantine Fusarium species in Korea. Plant Pathol. J. 26:409-416. https://doi.org/10.5423/PPJ.2010.26.4.409
- Jurado, M., Vazquez, C., Marin, S., Sanchis, V. and Gonzalez-Jaen, M. T. 2006. PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Syst. Appl. Microbiol. 29:681-689. https://doi.org/10.1016/j.syapm.2006.01.014
- Kim, J.-S., Kang, N. J., Kwak, Y.-S. and Lee, C. 2017. Investigation of genetic diversity of Fusarium oxysporum f. sp. fragariae using PCR-RFLP. Plant Pathol. J. 33:140-147. https://doi.org/10.5423/PPJ.FT.01.2017.0011
- Konstantinova, P. and Yli-Mattila, T. 2004. IGS-RFLP analysis and development of molecular markers for identification of Fusarium poae, Fusarium langsethiae, Fusarium sporotrichioides and Fusarium kyushuense. Int. J. Food Microbiol. 95:321-331. https://doi.org/10.1016/j.ijfoodmicro.2003.12.010
- Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
- Leslie, J. F. and Summerell, B. A. 2006. The Fusarium Laboratory Manual. Blackwell Publishing, Iowa, USA. 388 pp.
- Mule, G., Susca, A., Stea, G. and Moretti A. 2004. A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. Eur. J. Plant Pathol. 110:495-502. https://doi.org/10.1023/B:EJPP.0000032389.84048.71
- Nicholson, P., Jenkinson, P., Rezanoor, H. N. and Parry, D. W. 1993. Restriction fragment length polymorphism analysis of variation in Fusarium species causing ear blight of cereals. Plant Pathol. 42:905-914. https://doi.org/10.1111/j.1365-3059.1993.tb02676.x
- O'Donnell, K., Ward, T. J., Robert, V. A. R. G., Crous, P. W., Geiser, D. M. and Kang, S. 2015. DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica 43:583-595. https://doi.org/10.1007/s12600-015-0484-z
- Pramunadipta, S., Widiastuti, A., Wibowo, A., Suga, H. and Priyatmojo, A. 2022. Identification and pathogenicity of Fusarium spp. associated with the sheath rot disease of rice (Oryza sativa) in Indonesia. J. Plant Pathol. 104:251-267. https://doi.org/10.1007/s42161-021-00988-x
- Rasmussen, H. B. 2012. Restriction fragment length polymorphism analysis of PCR-amplified fragments (PCR-RFLP) and gel electrophoresis: valuable tool for genotyping and genetic fingerprinting. In: Gel electrophoresis: principles and basics, ed. by S. Magdeldin, pp. 315-334. InTech Europe, Rijeka, Croatia.
- Suga, H., Karugia, G. W., Ward, T., Gale, L. R., Tomimura, K., Nakajima, T., Miyasaka, A., Koizumi, S., Kageyama, K. and Hyakumachi, M. 2008. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98:159-166. https://doi.org/10.1094/PHYTO-98-2-0159
- Suga, H., Kitajima, M., Nagumo, R., Tsukiboshi, T., Uegaki, R., Nakajima, T., Kushiro, M., Nakagawa, H., Shimizu, M., Kageyama, K. and Hyakumachi, M. 2014. A single nucleotide polymorphism in the translation elongation factor 1α gene correlates with the ability to produce fumonisin in Japanese Fusarium fujikuroi. Fungal Biol. 118:402-412. https://doi.org/10.1016/j.funbio.2014.02.005
- Viaud, M., Pasquier, A. and Brygoo, Y. 2000. Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol. Res. 104:1027-1032. https://doi.org/10.1017/S0953756200002835
- Xia, J. W., Sandoval-Denis, M., Crous, P. W., Zhang, X. G. and Lombard, L. 2019. Numbers to names: restyling the Fusarium incarnatum-equiseti species complex. Persoonia 43:186-221. https://doi.org/10.3767/persoonia.2019.43.05
- Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S. and Madden, T. L. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134